
Code Clock
Tutorial 4: Functions

Learn.to.code

Programming with Python

@ QUB

1



Functions
A function is a block of organised, reusable code that is used to perform a single, related
action. Functions provide better modularity for your application and a high degree of code
reusing.

As you already know, Python gives you many built-in functions like print(), etc. but you
can also create your own functions. These functions are called user-defined functions.

Defining a Function

A function is a reusable block of programming statements designed to perform a certain
task. To define a function, Python provides the def keyword.

Enter the following code to create a simple function (def) entitled codeClock and then run

the function by calling it the below the function

def codeClock():
  print(“Welcome to Code Clock Week 4”)

#This will ensure the function is ‘called’ i.e runs the function in
the program

codeClock()

Function Parameters

It is possible to define a function to receive one or more parameters (also called arguments)
and use them for processing inside the function block.

Parameters/arguments may be given suitable formal names. The printMyName() function
below is now defined to receive a string parameter called name. Inside the function,
the print() statement is modified to display a person’s name addressed to the received
parameter.

Enter the following code to create a simple def entitled printMyName which takes a

parameter name and concatenates it with a string within a print function

def printMyName(name):
  print(“Welcome to Code Clock Week 4” + name)

printMyName(“Errol”)

2



The function parameters can have additional annotation to specify the type of the
parameter using parameter: type syntax. For example, the following annotates the
parameter type string.

Enter the following code to create a def which specifies the parameter type accepted by

the function

def printMyName(name: str):
  print(“Welcome to Code Clock Week 4” + name)
printMyName(“Errol”)
printMyName(123)#This should throw an error

Multiple Parameters

A function can have multiple parameters of the same data types.

Enter the following code which takes three parameters (names) and prints them out

through a print function

def printNames(name1, name2, name3):
  print(“Welcome to Code Clock Week 4\n ” + name1 +”\n” + name2 +
“\n” + name3)

printNames (“David”,“Michael”,“Bradley”)

…and of different types.

Enter the following code which takes three parameters of varied types and prints them out

through a print function

def printTrainerDetails(name, age, gender):
  print(“Your trainer today is\n- Name: ” + name + “\n-age” + age +
“\n-gender” + gender)

printTrainerDetails (“Errol Martin”,“45”,“Male”)

Unknown Number of Parameters

A function can have specify to receive a unknown numbers of parameters. This is achieved
by placing an * in front of the parameter in brackets

Enter the following code which takes an unknown number of parameters (names) and

prints them out through a print function

def printName(*names):
print(“Welcome to Code Clock Week 4\n ” + name[0] + “\n” +
name[1] + “\n” + name[2])

printNames (“Rosie”,”Sam”,”Autumn”)

3



Default Parameters

A default argument is an argument that assumes a default value if a value is not provided in
the function call for that argument. 

Enter the following code which takes an four parameters of different types, one of which

has a default value

def printTrainerDetails(name, age, gender, course= “Course:
Programming with Python”): 
print(“Name:” + name)
print(“Age:” + age)
print(“Gender” + gender)
print(course)

printTrainerDetails (“Errol Martin”,“45”,“Male”)

#What happens when you passed the fourth parameter
printTrainerDetails (“Errol Martin”,“45”,“Male”,“Programming with
C#”))

Return Statement (single)

The statement return enables a functions to send back a value(s) to the function call.

Enter the following code which creates a function taking two integer parameters and

returns the total the function call

def simpleCalc(num1, num2)
total = num1+num2
return total

print(“The sum of 12 and 14 is ” + str(simpleCalc(12,14)))

Enter the following code which create a function to convert an user defined parameter

inches into cm and returns two values through the return statement

def convertInchToCm(inch):
cm = inch * 2.54
return cm, "cm"

inch = int(input("Enter inches: "))
value, unit = convertInchToCm(inch)
print("Conversion =" + value + unit)

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined
outside have a global scope.

This means that local variables can be accessed only inside the function in which they are
declared, whereas global variables can be accessed throughout the program body by all
functions. When you call a function, the variables declared inside it are brought into scope.

4



Enter the following code which highlights the difference between local and global

variables within the context of a function

total = 0; # This is global variable.
def sum(num1,num2):

#Add both the parameters and return them.
total = arg1 + arg2; #Here total is local variable.
print(“Inside the function local total :” + total)
return total;

#Now you can call sum function
sum(10, 20);
print(“Outside the function global total: ” + total)

5



Challenge:

1. Write a function, and call it, which prints a parameter containing today’s date i.e. 25th

Feb 2023

2. Write a function, and call it, which when called prints the number 1 to 10

3. Write a function, and call it, which calculates and prints the average of two numbers

passed as parameters.

4.

a) Write a function, and call it, which takes three integer parameters and calculates the

volume of a rectangle, returning both the volume and unit of measurement i.e. “cm3”

and prints in a suitable output statement.

b) Adapt the above to enable the user to enter the three dimensions.

5.

a) Write a function which calculates and returns both the simple interest AND amount

to repay to replay on a user-defined loan amount and user-defined number of years

with an interest rate of 4.5%. The code should ensure that the user enters a loan

amount of no more than £30,000 and no less than £1000. The minimum period

should also be no less than 2 years. Both of these values should be printed within the

function call statement.

b) Create another function which now calculates compound interest for both

user-defined loan amount and number of years.

c) Adapt the code to enable the user to choose whether to calculate either simple

interest or compound interest

d) Adapt the code to enable the user to calculate either simple or compound interest

more than once.

e) Create a menu which enables the user to choose either:
1. Calculate Simple Interest
2. Calculate Compound Interest
3. Stats*
This menu will enable the user to choose which function to call.
*This should print out the number of times the interest functions have been called
during that a particular session.

f) Adapt the code to create another function which handles after the input of these

values

6. Create a registration function which enables an user to register within an application

using their

- first name,

- surname,

- date of birth and

- gender.

This registration function must also:

6



- validate the password to ensure it meets the following criteria.

- must not contain the word password

- must be between 9 and 15 characters in length

- must contain a Upper case letter

- must contain a Lower case letter

- must contain one of the following special characters: 

- @

- #

- £

- &

- ?

The registration function should also call a function which generates an username

which uses the first initial of the registrants first name, their surname and randomly

generate 3-digit number to create a username in the form “emartin680”. The user

should receive confirmation of both their newly generated username and also

confirmation that the password was successfully.

7


