
Practical 8 [PROGRAMMING USING C#]

 Page 1

Variables

Variables represent storage locations. Every variable has a type that determines what values can be

stored in the variable. C# is a type-safe language, and the C# compiler guarantees that values stored

in variables are always of the appropriate type e.g. you cannot store an int in a string variable.

Variable Data types include:

string – Represents text as a series of Unicode characters e.g. string name = “Matthew Dorrian”;

int – Represents whole numbers e.g. int age = 21;

decimal – Represents numbers that can decimal points (higher accuracy than double/ can accept

more decimal places) e.g. decimal cost = 14.55;

double – Represents numbers that can decimal points e.g. double cost = 14.55;

bool – Represents true or false e.g. bool flag = true;

char – Represent a character of text e.g. char YesOrNo = ‘N’;

byte – Represent 8 bit number (0 – 255) e.g. byte a = 240;

Keywords

Keywords are predefined, reserved identifiers that have special meanings to the compiler. They

cannot be used as identifiers in your program unless they include @ as a prefix. For example, @if is a

valid identifier but if is not because if is a keyword.

Example Keywords include:

void - When used as the return type for a method, void specifies that the method doesn't return a

value.

static - Use the static modifier to declare a static member, which belongs to the type itself rather

than to a specific object. The static modifier can be used with classes, fields, methods, properties,

operators, events, and constructors, but it cannot be used with indexers, destructors, or types other

than classes.

override - The override modifier is required to extend or modify the abstract or virtual

implementation of an inherited method, property, indexer, or event.

Access Modifiers

All types and type members have an accessibility level, which controls whether they can be used
from other code in your assembly or other assemblies. You can use the following access modifiers to
specify the accessibility of a type or member when you declare it:

Practical 8 [PROGRAMMING USING C#]

 Page 2

public - The type or member can be accessed by any other code in the same assembly or another
assembly that references it.

private - The type or member can be accessed only by code in the same class or struct.

protected - The type or member can be accessed only by code in the same class or struct, or in a
class that is derived from that class.

internal - The type or member can be accessed by any code in the same assembly, but not from
another assembly e.g. same namespace

Convert

At times you will need to convert a variable from one base type to another base type e.g. string to

int. To do this, C# has a built in Convert class and has several members to convert types.

Example type conversions:

Convert.ToDouble() – converts to a double

Convert.ToInt32() – converts to a int

Convert.ToDecimal() – converts to a decimal

Writing to and Reading from the Console

The Console is used to represent the standard input, output, and error streams for console

applications. We usually use the console to write data to the console and to allow users to enter

data into the console and use this data.

To write data to the console, the console has two members we usually use which are:

Console.WriteLine() – Write data to the console followed by a new line e.g

Console.WriteLine(“Hello”);

Console.Write() - Write data to the console followed e.g. Console.Write(“Age: “ + 21);

To read data from the console, the console has members to read the data:

Console.ReadLine() - Reads the next line of characters from the standard input stream

Methods

A method is a code block that contains a series of statements. A program causes the statements to

be executed by calling the method and specifying any required method arguments.

http://msdn.microsoft.com/en-us/library/yzh058ae.aspx
http://msdn.microsoft.com/en-us/library/st6sy9xe.aspx
http://msdn.microsoft.com/en-us/library/bcd5672a.aspx
http://msdn.microsoft.com/en-us/library/7c5ka91b.aspx

Practical 8 [PROGRAMMING USING C#]

 Page 3

Methods are declared in a class or struct by specifying the access level such as public or private,

optional modifiers such as abstract or sealed, the return value, the name of the method, and any

method parameters. These parts together are the signature of the method.

Methods can return a value to the caller. If the return type, the type listed before the method name,

is not void, the method can return the value by using the return keyword. A statement with

the return keyword followed by a value that matches the return type will return that value to the

method caller. The return keyword also stops the execution of the method.

If the return type is void, a return statement without a value is still useful to stop the execution of

the method. Without the return keyword, the method will stop executing when it reaches the end of

the code block. Methods with a non-void return type are required to use the return keyword to

return a value.

Example methods:

public void PrintName(string name)

{

 Console.WriteLine(“Name: ” + name);

}

public int GetAge()

{

 int age = 21;

 return age;

}

Comments

You can easily add comments to any part of your program by using // for single line comments or /*

*/ for multiline comments. Example:

// This is a single Comment

/*

This is a multiline comment

Line Two

*/

String Escape Sequences

Strings allow you to use string escape sequences to perform certain string actions.

Example string escape sequences include:

\n - Takes a new line in a string

\t – Takes a horizontal tab E.g: Console.WriteLine(“Hello\nThis will be a new line\tTabbed”);

Practical 8 [PROGRAMMING USING C#]

 Page 4

String Operations

The String class provides a number of methods that can be used to create new strings from existing

ones as the String class is Immutable

Immutable means that the contents of the string object cannot be changed after the object is

created.

Key Methods include:

 ToLower() – Convert a string to all lowercase

 ToUpper() – Convert a string to all uppercase

 Trim() – Remove leading and trailing whitespace from a string

 Substring(int start) – Gets the substring from the specified start position and the end of the

string

 Spilt(char delimiter) – Separate strings into a string array using the delimiter

Practical 8 [PROGRAMMING USING C#]

 Page 5

Loops

One of the essential techniques when writing code is looping - the ability to repeat a block of

number of times. In C#, they come in 4 different variants, and we will have a look at each one of

them.

The while Loop –

The while loop is probably the most simple one, so we will start with that. The while loop simply

executes a block of code as long as the condition you give it is true. It is a pre check loop meaning it

checks the condition before the code executes e.g.:

The do while Loop –

The opposite is true for the do while loop, which works like the while loop in other aspects through.

The do loop evaluates the condition after the loop has executed, which makes sure that the code

block is always executed at least once. It is a post check loop meaning it checks the condition after

the code has been executed at least once e.g.:

The for Loop –

The for loop is a bit different. It's preferred when you know how many iterations you want, either

because you know the exact amount of iterations, or because you have a variable containing the

amount e.g.:

The for loop consists of 3 parts - we initialize a variable for counting, set up a conditional statement

to test it, and increment the counter (++ means the same as "variable = variable + 1").

Practical 8 [PROGRAMMING USING C#]

 Page 6

The foreach Loop –

The last loop we will look at, is the foreach loop. It operates on collections of items, for instance

arrays or other built-in list types.

We use the foreach loop to run through each item, setting the name variable to the item we have

reached each time. That way, we have a named variable to output.

As you can see, we declare the name variable to be of the string type – you always need to tell the

foreach loop which datatype you are expecting to pull out of the collection. In case you have a list of

various types, you may use the object class instead of a specific class, to pull out each item as an

object.

When working with collections, you are very likely to be using the foreach loop most of the time,

mainly because it’s simpler than any of the other loops for these kind of operations.

The if else statement

Often a value is not known and by using an if-statement, we make a logical decision based on it. In

an if-statement, we test expressions. These evaluate to true or false.

In order to test multiple conditions, we can use if else if statements to check each condition and

perform the applicable action. If no condition is met, you can ensure a statement is always ran by

placing an end else statement e.g.:

Practical 8 [PROGRAMMING USING C#]

 Page 7

Boolean operators

C# provides a large set of operators, which are symbols that specify which operations to perform in

an expression.

Operations on integral types to use in conditional statements e.g. if else, while include:

== equal to

!= not equal to

 > greater than

< less than

<= less than or equal to

>= greater than or equal to

Conditional operators include:

&& Conditional AND

|| Conditional OR

! Conditional NOT

The switch statement

The switch statement is like a set of if statements. It's a list of possibilities, with an action for each

possibility, and an optional default action, in case nothing else evaluates to true. A simple switch

statement looks like this:

The identifier to check is put after the switch keyword, and then there's the list of case statements,

where we check the identifier against a given value.

You will notice that we have a break statement at the end of each case. C# simply requires that we

leave the block before it ends.

Practical 8 [PROGRAMMING USING C#]

 Page 8

Classes

A class is a construct that enables you to create your own custom types by grouping together

variables of other types, methods and events. A class is like a blueprint. It defines the data and

behaviour of a type.

Every public class has a default constructor. This is inserted by the C# compiler and is not shown in

the C# code. It receives no parameters. It has no internal logic. It is removed if you add an explicit

constructor. If you have an explicit constructor, you can still declare a default blank constructor.

Explicit Constructors allow the user to create instances of classes and allows the user to pass

parameters to the constructor to populate the attributes of the instance.

Example class shown below:

Although they are sometimes used interchangeably, a class and an object are different things. A
class defines a type of object, but it is not an object itself.

An object is a concrete entity based on a class, and is sometimes referred to as an instance of a class.

Objects can be created by using the new keyword followed by the name of the class that the object
will be based on, like this:

http://msdn.microsoft.com/en-us/library/51y09td4.aspx

