
Practical 8 [PROGRAMMING USING C#]

 Page 1

EXERCISE 1
The tasks in the first part of this practical are step by step instructions as to how an read and write to

files in C# and to use the string class and its operations

TASK 1: String Operations

The String class provides a number of methods that can be used to create new strings from existing

ones as the String class is Immutable (The contents of the string object cannot be changed after the

object is created).

Key Methods include:

 ToLower() – Convert a string to all lowercase

 ToUpper() – Convert a string to all uppercase

 Trim() – Remove leading and trailing whitespace from a string

 Substring(int start) – Gets the substring from the specified start position and the end of the

string

 Spilt(char delimiter) – Separate strings into a string array using the delimiter

Now try these each of these operations on a string of your own.

Practical 8 [PROGRAMMING USING C#]

 Page 2

TASK 2: Using FileStreams to write to a file with a Console Application

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Console Application and name it e.g. Prac08Task1.

Step 2: We want to allow the user to enter text saved to a text file. To do this, open the Program.cs

and prompt the user to enter in text using the Console as shown below:

Step 3: Next we will create a string variable which will be the location where the text file will be

saved to and the name of the file:

Step 4: We will create a FileStream object which will deal with reading and writing to a file. Once

the FileStream is created we say specify the location of the file and the creation mode:

Step 5: Now that we have the FileStream created and is set up to write the file to the specified

location, we will change the text inputted from the user and convert the data to a byte array to be

used by the FileStream:

Step 6: Now it’s time to create the file and to do this, we need to write the data to the FileStream:

*Remember to Close the filestream as this releases the file to be accessed by other

processes/programs

Example program is shown below:

Practical 8 [PROGRAMMING USING C#]

 Page 3

Unfortunately when dealing with files, exceptions can regularly occur e.g. access denied for the

location. Therefore to be safe and to perform error handling, use a try/catch block with the

FileReaders to ensure the program doesn’t crash if an exception occurs:

As you can see the catch will catch any IOExceptions and write the exception to the console

Practical 8 [PROGRAMMING USING C#]

 Page 4

Task 3: Using FileStreams to write to a file with a GUI

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Windows Forms Application and name it e.g. Prac08Task2.

Step 2: Create the following GUI using the toolbox to add elements to the form e.g. Button,

RichTextBox. You can reposition any element on the screen by clicking and dragging the element to

the desired location. Remember to use the Text and Name properties to correctly name your

buttons and change the title of your window:

Step 3: Add a SaveFileDialog component using the toolbox and drag and place on the form.

This is a non-visible component:

Step 4: Now that the UI has been set up, it is time to look at the code behind. We will first set up the

properties of the saveFileDialog using the constructor for the form and set the dialog to save

the file as text file (.txt) as default:

Practical 8 [PROGRAMMING USING C#]

 Page 5

Step 5: Double click on the button in design view which will automatically generate a method which

will be called when the button is clicked. This method will make the saveDialog appear:

Step 6: Next we need to create a method that will be called when the file location is selected and

file name entered using the file dialog button and the Ok button is selected. To do this, navigate to

the designer view and double click on the saveFileDialog which will be shown on the designer screen

below the form:

Step 6: This will automatically generate a method which will be called when the OK button is

clicked. This method is where the text from the rich text box will be written to the file specified using

the save dialog. First assign the filename from the saveDialog to a string variable to be used in the

text file:

Step 7: We will create a FileStream object which will deal with reading and writing to a file. Once

the FileStream is created we say specify the location of the file and the creation mode:

Step 8: Now that we have the FileStream created and is set up to write the file to the specified

location, we will change the text inputted from the user and convert the data to a byte array to be

used by the FileStream. To ensure the new lines are persisted in the text file, replace the “\n” with

Environment.NewLine using the string Replace method:

Practical 8 [PROGRAMMING USING C#]

 Page 6

Step 9: Now it’s time to create the file and to do this, we need to write the data to the FileStream

and clear the filename of the saveFileDialog :

*Remember to Close the filestream as this releases the file to be accessed by other

processes/programs. Again due to the chance of exceptions, use a try/catch block with the

FileReaders to ensure the program doesn’t crash if an exception occurs.

Example output shown below:

Practical 8 [PROGRAMMING USING C#]

 Page 7

Task 4: Using FileStreams to read from a file with a Console Application

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Console Application and name it e.g. Prac08Task3.

Step 2: We will create a string variable which will be the location where the text file will be saved to

and the name of the file:

Step 3: We will now create a FileStream which will read from a text file and print the content to the

console:

Step 4: Next you will need to create a byte array setting the length of the array to the size of the file

and set up variables which we need to read from the file:

Step 5: We will now use a while loop and the fileStream.Read method to read from the file

until all the stream has been read. We will then output to the console the contents of the byte array

converted to a string using the Encoding class:

*Remember to Close the filestream as this releases the file to be accessed by other

processes/programs. Again due to the chance of exceptions, use a try/catch block with the

FileReaders to ensure the program doesn’t crash if an exception occurs.

Example output shown below:

Practical 8 [PROGRAMMING USING C#]

 Page 8

Task 5: Using FileStreams to read from a file with a GUI

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Windows Forms Application and name it e.g. Prac08Task4.

Step 2: Create the following GUI using the toolbox to add elements to the form e.g. Button. You can

reposition any element on the screen by clicking and dragging the element to the desired location.

Remember to use the Text and Name properties to correctly name your buttons and change the title

of your window:

Step 3: Add an OpenFileDialog component using the toolbox and drag and place on the form.

This is a non-visible component:

Step 4: Now that the UI has been set up, it is time to look at the code behind. We will first set up the

properties of the OpenFileDialog using the constructor for the form and set the dialog to save

the file as text file (.txt) as default:

Step 5: Double click on the button in design view which will automatically generate a method which

will be called when the button is clicked. This method will make the OpenDialog appear:

Practical 8 [PROGRAMMING USING C#]

 Page 9

Step 6: Next we need to create a method that will be called when the file is selected using the Open

File dialog button and the Ok button is selected. To do this, navigate to the designer view and double

click on the OpenFileDialog which will be shown on the designer screen below the form:

Step 7: This will automatically generate a method which will be called when the OK button is

clicked. This method is where the text from the text file will be read and displayed in a MessageBox.

First assign the filename from the OpenDialog to a string variable to be used in the MessageBox:

Step 8: We will create a FileStream object which will deal with reading from a file. Once the

FileStream is created we say specify the location of the file and the creation mode:

Step 9: Next you will need to create a byte array setting the length of the array to the size of the file

and set up variables which we need to read from the file:

Step 10: We will now use a while loop and the fileStream.Read method to read from the file

until all the stream has been read. We will then output to a MessageBox the contents of the byte

array converted to a string using the Encoding class:

*Remember to Close the filestream as this releases the file to be accessed by other

processes/programs. Again due to the chance of exceptions, use a try/catch block with the

FileReaders to ensure the program doesn’t crash if an exception occurs.

Practical 8 [PROGRAMMING USING C#]

 Page 10

Example output show below:

Practical 8 [PROGRAMMING USING C#]

 Page 11

EXERCISE 2

Task 6: Using BinaryWriters to write to a binary file

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Windows Forms Application and name it e.g. Prac08Task5.

Step 2: We want to write to a binary file an array of ints which will represent scores. To do this,

open the Program.cs and create an array of type int that can store 10 numbers and assign numbers

to each. You can create the array by hard coding the numbers or get the user to enter in each

number.

Step 3: We will create a BinaryWriter object which will deal with writing to a binary file. Once

the BinaryWriter is created and specify the location of the file and the creation mode:

Step 4: Now that the BinaryWriter is set up to write to a binary file to the specified location, we will

write each score in the array to the file. To do this, use a for or a foreach loop and write each

value:

Example output shown below:

*Remember to Close the BinaryWriter as this releases the file to be accessed by other

processes/programs. Again due to the chance of exceptions, use a try/catch block with the

BinaryWriter to ensure the program doesn’t crash if an exception occurs.

Practical 8 [PROGRAMMING USING C#]

 Page 12

Task 7: Using BinaryReaders to read from a binary file

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Windows Forms Application and name it e.g. Prac08Task6.

Step 2: We want to read from a binary file to output to the console the scores. To do this, open the

Program.cs and we will create a BinaryReader object which will deal with reading from a binary

file. Once the BinaryReader is created, specify the location of the file and the creation mode:

Step 3: Now that the BinaryReader is set up to write to a binary file to the specified location, we will

create a position and length variable to be used to loop through the base stream:

Step 4: As the binary file contains only numbers, we will loop through the BinaryReader and read an

integer and write the int to the console. We will increment the position variable by the size of an int

(4) to loop through each number in the file:

Example output is shown below:

*Remember to Close the BinaryReader as this releases the file to be accessed by other

processes/programs. Again due to the chance of exceptions, use a try/catch block with the

BinaryReader to ensure the program doesn’t crash if an exception occurs.

Practical 8 [PROGRAMMING USING C#]

 Page 13

Task 8: Using StreamWriters to write to a text file

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Windows Forms Application and name it e.g. Prac08Task7.

Step 2: We want to write to a text file using a StreamWriter. To do this, open the Program.cs

and we will create a StreamWriter object which will write to a text file to the specified location.

StreamWriter performs all the FileReader does in one statement as shown below:

Step 3: We want to write to a text file using a StreamWriter. To do this, open the Program.cs

and we will use the WriteLine method of the StreamWriter to write data to the file:

*Remember to Close the StreamWriter as this releases the file to be accessed by other

processes/programs. Again due to the chance of exceptions, use a try/catch block with the

StreamWriter to ensure the program doesn’t crash if an exception occurs.

Example output shown below:

Practical 8 [PROGRAMMING USING C#]

 Page 14

Task 9: Using StreamReaders to read from a text file

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Windows Forms Application and name it e.g. Prac08Task8.

Step 2: We want to write to a text file using a StreamReader. To do this, open the Program.cs

and we will create a StreamReader object which will write to a text file to the specified location.

StreamReader performs all the FileReader does in one statement as shown below:

Step 3: We want to print each line from the file to the console so we will use the ReadLine()

method of the StreamReader to read each line:

*Remember to Close the StreamReader as this releases the file to be accessed by other

processes/programs. Again due to the chance of exceptions, use a try/catch block with the

StreamReader to ensure the program doesn’t crash if an exception occurs.

Example output shown below:

Practical 8 [PROGRAMMING USING C#]

 Page 15

EXERCISE 3

Task 10: Using Serialisation to write and read objects to and from a file

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Windows Forms Application and name it e.g. Prac08Task9.

Step 2: We will create a Car class which will hold information about a car e.g. engineSize, make,

model and create an Owner class which will store the owner’s name and age. We have to tag the

classes as Serializable which means we can write objects to a file (Refer to Serialization in the

PowerPoint):

For the Serialization to work, there has to be a blank constructor but you can add your own

constructor to instantiate the object and have the variables set to public:

Step 3: Create instants of the Car class which will consist of the car’s details and the Owner object:

Step 4: To serialize the object to an XML file, we need to create an XmlSerializer object and

set the type of object the Serializer will expect e.g. Car. Open Program.cs and create the

XmlSerializer:

Practical 8 [PROGRAMMING USING C#]

 Page 16

Step 5: Create a StreamWriter and specify where to write the xml file to. Use the Serialize

method of the XmlSerializer to write your object to the file location using the StreamWriter:

*Remember to Close the XmlStreamWriter as this releases the file to be accessed by other

processes/programs. Again due to the chance of exceptions, use a try/catch block with the

XmlStreamWriter to ensure the program doesn’t crash if an exception occurs.

Example output shown below:

Step 6: To deserialize the object from an XML file to assign to a variable, we need to create an

XmlSerializer object and set the type of object the Serializer will expect e.g. Car. Open

Program.cs and create the XmlSerializer:

Step 7: We need to read the XML file so to do this, we need to create a FileStream to read the

specified xml file:

Step 8: We will use the Deserialize method to read the xml from the file and cast the object

created from the stream to a Car and assign to a Car object. Next we will print out the details of the

returned Car object:

Example output shown below:

Practical 8 [PROGRAMMING USING C#]

 Page 17

Task 11: Serialization
To get used to serialization, create a GUI project which will show the details of a deserialized Car

object in a MessageBox. Example output shown below:

