EXERCISE 1

The tasks in the first part of this practical are step by step instructions as to how an read and write to
files in C# and to use the string class and its operations

TASK 1: String Operations
The String class provides a number of methods that can be used to create new strings from existing

ones as the String class is Immutable (The contents of the string object cannot be changed after the
object is created).

Key Methods include:

e Tolower() — Convert a string to all lowercase
string name = “"Matthew Dorrian®;
Conscle.Writeline(name); atthew Doprian
string lowerCaseMame = name.Tolower(); atthew dorrian
Conscle.Writeline(lowerCaseName);

e ToUpper() — Convert a string to all uppercase
//ToUpperCase

string name = “"Matthew Dorrian”;
Conscle.WriteLline(name); ATTHEW DORRIAN
string upperCaseMame = name.TolUpper();
Conscle.Writeline{upperCaseName);

e Trim() — Remove leading and trailing whitespace from a string

string spaces = " Matthew Dorrian "3
Conscle.Writeline(spaces); Hatthqw Dorrian
string trimmedName = spaces.Trim(); atthew Dorrian

Conscle.Writeline(trimmedName);

e Substring(int start) — Gets the substring from the specified start position and the end of the

string
//5substring
string name = "Matthew Dorrian™;

Conscle.Writeline(name}; |,g§§2§ﬁ Dorrian

string surname = name.Substring(7);
Conscle.Writeline(surname) ;

o Spilt(char delimiter) — Separate strings into a string array using the delimiter

J/5pilt

string name = "Matthew Dorrian™;
Consocle.Writeline(name);

string[] spiltName = name.Split(' '};
foreach (var item in spiltName) Dorrian

1
¥

Now try these each of these operations on a string of your own.

Consocle.Writeline(item);

Page 1

Practical 8 [PROGRAMMING USING C#]

TASK 2: Using FileStreams to write to a file with a Console Application
Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Console Application and nameite.g. Prac08Taskl.

Step 2: We want to allow the user to enter text saved to a text file. To do this, open the Program.cs
and prompt the user to enter in text using the Console as shown below:

//Allow user to enter in text to save to the file
Conscle.WriteLline{"Enter text to be sawved to file:™);
string text = Conscle.ReadLine();

Step 3: Next we will create a string variable which will be the location where the text file will be
saved to and the name of the file:

//location to save the file too

Step 4: We will create a FileStream object which will deal with reading and writing to a file. Once
the FileStream is created we say specify the location of the file and the creation mode:

//Create filestream cobject
FileStream wFile;

f/fCreate the filestream specifying the location and the file creation mode
wFile = new FileStream(lecation, FileMode.Create);

Step 5: Now that we have the FileStream created and is set up to write the file to the specified
location, we will change the text inputted from the user and convert the data to a byte array to be
used by the FileStream:

//Create a byte array

/fCreate byte array using the text
byteData = Encoding.ASCII.GetBytes(text);

ffffff

Step 6: Now it’s time to create the file and to do this, we need to write the data to the FileStream:

ffwrite the data to the filestream which will be saved to the location
wFile.Write(byteData, ®, byteData.Length};

/{Close the filestream
wFile.Close();

*Remember to Close the filestream as this releases the file to be accessed by other
processes/programs

Example program is shown below:

Page 2

N CA\Windows\system32\cmd.exe

Enter text to be saved to file:
ello Matthew thiz will he szaved to the text file :>

pre

El streamtest.txt - Notepad = =

File Edit Format Wiew Help
Helln Matthew this will be saved to the text file :)

Unfortunately when dealing with files, exceptions can regularly occur e.g. access denied for the
location. Therefore to be safe and to perform error handling, use a try/catch block with the
FileReaders to ensure the program doesn’t crash if an exception occurs:

//try catch method to ensure error handling e.g. permission issue with location to write to
try

{/location to save the file too
string location = "C:\\Users\\useri\\Desktop\\streamtest.txt";

f/Create filestream object
FileStream wFile;

//Create the filestream specifying the location and the file creation mode
wFile = new FileStream(location, FileMode.Create);

{//Create a byte array
byte[] byteData;

{//Create byte array using the text

byteData = Encoding.ASCII.GetBytes(text);

/fwrite the data to the filestream which will be saved to the location
wFile.Write(byteData, @, byteData.Length);

{/Close the filestream
wFile.Close();

}

//Catch any IOExceptions

catch (IOException ex)

1
//Print error to console
Console.Writeline(ex.ToString(}));

As you can see the catch will catch any IOExceptions and write the exception to the console

Page 3

Task 3: Using FileStreams to write to a file with a GUI
Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Windows Forms Application and nameite.g. Prac08Task2.

CH#
Windows Forms Application Visual C#

Step 2: Create the following GUI using the toolbox to add elements to the form e.g. Button,
RichTextBox. You can reposition any element on the screen by clicking and dragging the element to
the desired location. Remember to use the Text and Name properties to correctly name your
buttons and change the title of your window:

F

il SavetoaTextFile |o | B =kl

Entertest to be saved to file:

Wite to File

Step 3: Add a SaveFileDialog component using the toolbox and drag and place on the form.
This is a non-visible component:

Toolbox v 0
Search Toolbox P~
Wl SaveFileDialog -~

Step 4: Now that the Ul has been set up, it is time to look at the code behind. We will first set up the
properties of the saveFileDialog using the constructor for the form and set the dialog to save
the file as text file (.txt) as default:

public Forml()

1
InitializeComponent();
saveFileDialogl.Filter = @"Text Files | *.txt";
saveFileDialogl.DefaultExt = "txt";

b

Page 4

Step 5: Double click on the button in design view which will automatically generate a method which
will be called when the button is clicked. This method will make the saveDialog appear:

//0pen the dialog

private wvoid WriteBtn_Click(cbject sender, Eventhrgs e)

1
¥

saveFileDialogl.ShowDialog();

Step 6: Next we need to create a method that will be called when the file location is selected and
file name entered using the file dialog button and the Ok button is selected. To do this, navigate to
the designer view and double click on the saveFileDialog which will be shown on the designer screen
below the form:

™ saveFileDialog

Step 6: This will automatically generate a method which will be called when the OK button is
clicked. This method is where the text from the rich text box will be written to the file specified using
the save dialog. First assign the filename from the saveDialog to a string variable to be used in the
text file:

Jflocation and file Mame to save the file too
string fileName = saveFileDialogl.FileName;

Step 7: We will create a FileStream object which will deal with reading and writing to a file. Once
the FileStream is created we say specify the location of the file and the creation mode:

//Create filestream object

{//Create the filestream specifying the location and the file creation mode
wFile = new FileStream(fileName, FileMode.Create);

Step 8: Now that we have the FileStream created and is set up to write the file to the specified
location, we will change the text inputted from the user and convert the data to a byte array to be
used by the FileStream. To ensure the new lines are persisted in the text file, replace the “\n” with
Environment.NewLine using the string Replace method:

//Create a byte array

ffensure new lines are taken in the text file
var text = richTextBoxl.Text.Replace("\n", Envircnment.NewLine};

f//Create byte array using the text
byteData = Encoding.ASCII.GetBytes(text);

Page 5

Step 9: Now it’s time to create the file and to do this, we need to write the data to the FileStream
and clear the filename of the saveFileDialog :

ffwrite the data to the filestream which will be saved to the location
wFile.Write(byteData, @, byteData.Length);

J//Clear filename of dialog

saveFileDialogl.FileName = "";

¥

ffClose the filestream

wFile.Close();

*Remember to Close the filestream as this releases the file to be accessed by other
processes/programs. Again due to the chance of exceptions, use a try/catch block with the
FileReaders to ensure the program doesn’t crash if an exception occurs.

Example output shown below:

a! Save As
o2 SavetoaTextFile - F
T ' » ThisPC » Desktop v & Search Desktop el
Enter text to be saved to file: Organise v Mew folder 1= - [7]
Hello Matthew - -
This text has been written from the GLUI ~ Name Date modified Type =
rogram @ OneDrive
pred & . Code School 19/11/2014 15:00 File fol
J Uni Work 26/10/2014 17:39 File fol
Lines persisted| 1M This PC o ner) i fE °
L Weekl 18/11/2014 00:46 File fol »
& Desktop v € >
File name: | [SUISETHTE v
Wirite to File Save as type: | Text Files (*.bd) v
« Hide Folders Cancel
£ GUIExample.txt - Notepad - B
; ample.txt - Notepa

File Edit Format View Help

Hello Matthew
This text has been written from the GUI program

Lines persisted

Page 6

Practical 8 [PROGRAMMING USING C#]

Task 4: Using FileStreams to read from a file with a Console Application
Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Console Application and nameite.g. Prac08Task3.

Step 2: We will create a string variable which will be the location where the text file will be saved to
and the name of the file:

//location to load the file
string location = "C:\\Users\\user\\Desktop\\streamtest.txt";

Step 3: We will now create a FileStream which will read from a text file and print the content to the
console:

/fOpen the filestream in read only mode
FileStream fileStream = new FileStream(location, FileMode.Open, FileAccess.Read);

Step 4: Next you will need to create a byte array setting the length of the array to the size of the file
and set up variables which we need to read from the file:

//Create byte array
byte[] buffer;

int length = (int)fileStream.Length; // get file length

buffer = new byte[length]; !l create buffer
int count; ff actual number of bytes read
int sum = @; f/f total number of bytes read

Step 5: We will now use a while loop and the fileStream.Read method to read from the file
until all the stream has been read. We will then output to the console the contents of the byte array
converted to a string using the Encoding class:

// read until Read method returns @ (end of the stream has been reached)

while {{count = fileStream.Read(buffer, sum, length - sum)) > @)

1
¥

sum += count; /f/ sum is a buffer offset for next reading

/fWrite the text out to console by converting byte array to string
Consocle.Writeline(Encoding.Default.GetString(buffer));

*Remember to Close the filestream as this releases the file to be accessed by other
processes/programs. Again due to the chance of exceptions, use a try/catch block with the
FileReaders to ensure the program doesn’t crash if an exception occurs.

Example output shown below:

Task 5: Using FileStreams to read from a file with a GUI
Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Windows Forms Application and nameite.g. Prac08Task4.

C#
Windows Forms Application Visual C#

Step 2: Create the following GUI using the toolbox to add elements to the form e.g. Button. You can
reposition any element on the screen by clicking and dragging the element to the desired location.
Remember to use the Text and Name properties to correctly name your buttons and change the title
of your window:

of Read from Text File - O

Step 3: Add an OpenFileDialog component using the toolbox and drag and place on the form.
This is a non-visible component:

Toolbox v o M
Search Toolbox P~
1 OpenFileDialog -

Step 4: Now that the Ul has been set up, it is time to look at the code behind. We will first set up the
properties of the OpenFileDialog using the constructor for the form and set the dialog to save
the file as text file (.txt) as default:

public Forml()

1
InitializeComponent();
openFileDialogl.Filter = @"Text Files | *.txt";
openFileDialogl.DefaultExt = "txt";]

h

Step 5: Double click on the button in design view which will automatically generate a method which
will be called when the button is clicked. This method will make the OpenDialog appear:

private woid OpenFileButton Click({ocbject sender, Eventfrgs e)

1
¥

openFileDialogl. ShowDialog();

Page 8

Step 6: Next we need to create a method that will be called when the file is selected using the Open
File dialog button and the Ok button is selected. To do this, navigate to the designer view and double
click on the OpenFileDialog which will be shown on the designer screen below the form:

B openFileDialog

Step 7: This will automatically generate a method which will be called when the OK button is
clicked. This method is where the text from the text file will be read and displayed in a MessageBox.
First assign the filename from the OpenDialog to a string variable to be used in the MessageBox:

/faet the location of the file and the actual file name to be used in the message box title
string location = openFileDialogl.FileName;
string fileName = Path.GetFileNameWithoutExtension(openFileDialogl.FileName);

Step 8: We will create a FileStream object which will deal with reading from a file. Once the
FileStream is created we say specify the location of the file and the creation mode:

f/Open the filestream in read only mode

Step 9: Next you will need to create a byte array setting the length of the array to the size of the file
and set up variables which we need to read from the file:

//Create byte array

int length = (int)fileStream.Length; // get file length

buffer = new byte[length]; !/ create buffer
int count; f// actual number of bytes read
int sum = 8; // total number of bytes read

Step 10: We will now use a while loop and the fileStream.Read method to read from the file
until all the stream has been read. We will then output to a MessageBox the contents of the byte
array converted to a string using the Encoding class:

// read until Read method returns @ (end of the stream has been reached)
while ((count = fileStream.Read(buffer, sum, length - sum)) » @)

1
b

sum += count; // sum is a buffer offset for next reading

/fWrite the text out to a MessageBox setting the title to the file name by converting byte array to string
MessageBowx.Show(Encoding.Default.GetString(buffer), fileName);

*Remember to Close the filestream as this releases the file to be accessed by other
processes/programs. Again due to the chance of exceptions, use a try/catch block with the
FileReaders to ensure the program doesn’t crash if an exception occurs.

Page 9

Example output show below:

o5 Read from TextFile - H©

agl Open H
1 & » ThisPC » Desktop v (| | SearchDesktop o
Organise v New folder =~ M @
& Downloads A Name Date modified Type ~
%l Recent places || serializedObject.txt 20/11/2014 12:38 Text Document
|| streamitest.tet 21711/2014 00:15 Text Document
& OneDrive || streamWriter.bt 20, Text Document
|] testit 19 Text Document w
18 This PC v < >
File name: | streamtest.tet ~ | | TextFiles {*.bdt) v

streamtest

Hello Matthew this will be saved to the text file ;)

Page 10

Practical 8 [PROGRAMMING USING C#]

EXERCISE 2

Task 6: Using BinaryWriters to write to a binary file
Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Windows Forms Application and nameite.g. Prac08Taskb5.

Step 2: We want to write to a binary file an array of ints which will represent scores. To do this,
open the Program.cs and create an array of type int that can store 10 numbers and assign numbers
to each. You can create the array by hard coding the numbers or get the user to enter in each
number.

Step 3: We will create a BinaryWriter object which will deal with writing to a binary file. Once
the BinaryWriter is created and specify the location of the file and the creation mode:

//Create a BinaryWriter and specify where to save the bin file and the creation mode e.g. create
BinaryWriter b = new BinaryWriter(File.Open("C:\\Users\\user\\Desktop\\binaryFile.bin", FileMode.Create));

Step 4: Now that the BinaryWriter is set up to write to a binary file to the specified location, we will
write each score in the array to the file. To do this, use a for or a foreach loop and write each
value:

/fLoop through the score array
foreach (int score in scores)

1
{/write each score to the file in binary
b.Write(score);

Example output shown below:

binaryF‘i“l‘e.Ei-n

W CAUsers\user\DesktophbinaryFile.bin - Notepad++ =

File | Edit Search View Encoding Language Settings Macro Run Plugins Window 7 X
o 5 s s & | | | th | @ % |EB|= -'-:I ”

[=] binaryFile bin E!]

[0 IO o 2 IO 00 IO 10307 (10 1030 310119, T8 (08 |

length:26 lin Ln:1 Col:23 Sel: 0|0 Dos\Windows UCS-2 LEw/o BOM NS

*Remember to Close the BinaryWriter as this releases the file to be accessed by other
processes/programs. Again due to the chance of exceptions, use a try/catch block with the
BinaryWriter to ensure the program doesn’t crash if an exception occurs.

Page 11

Task 7: Using BinaryReaders to read from a binary file
Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Windows Forms Application and nameite.g. Prac08Taské6.

Step 2: We want to read from a binary file to output to the console the scores. To do this, open the

Program.cs and we will create a BinaryReader object which will deal with reading from a binary

file. Once the BinaryReader is created, specify the location of the file and the creation mode:
//BinaryReader which will read a binary file from the specified location

BinaryReader b = new BinaryReader(File.Open("C:\\Users\\user\\Desktop\\binaryFile.bin™, FileMode.Open));

Step 3: Now that the BinaryReader is set up to write to a binary file to the specified location, we will

create a position and length variable to be used to loop through the base stream:

'/ Position and length wvariables using the base stream.
int pos = 8;
int length = (int) b.BaseStream.Length;

Step 4: As the binary file contains only numbers, we will loop through the BinaryReader and read an
integer and write the int to the console. We will increment the position variable by the size of an int
(4) to loop through each number in the file:

while (pos < length)

1
'/ Read integer.
int v = b.ReadInt32();
//Write number to console
Conscle.WriteLine(v)};
[/ Advance our position variable.
pos += sizeof (int);

h

Example output is shown below:

B CAWindows\system32\cmd.exe

— —

*Remember to Close the BinaryReader as this releases the file to be accessed by other
processes/programs. Again due to the chance of exceptions, use a try/catch block with the
BinaryReader to ensure the program doesn’t crash if an exception occurs.

Page 12

Practical 8 [PROGRAMMING USING C#]

Task 8: Using StreamWriters to write to a text file
Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Windows Forms Application and nameite.g. Prac08Task7.

Step 2: We want to write to a text file usinga StreamWriter. To do this, open the Program.cs
and we will create a StreamWriter object which will write to a text file to the specified location.
StreamWriter performs all the FileReader does in one statement as shown below:

J/Create a StreamWriter specifying the location to create the file
Streamiriter writer = new Streambriter("C:\\Wsers\l\user\\Desktop\\streamdriter.txt™);

Step 3: We want to write to a text file usinga StreamWriter. To do this, open the Program.cs
and we will use the WritelLine method of the StreamWriter to write data to the file:

//Write data to the StreamWriter
writer.WritelLine("Name: Matthew Dorrian™);
writer.WriteLine("&ge: 21");

writer.Writeline("D0OB: 17/12/1992");
writer.Writeline("Course: BEng Software Engineering"};
writer.Writeline();

writer.Writeline("Marks: H

writer.Writeline("------ B H

int[] marks = {95, 91, 86, 79, 1@ea, 99};

f/rite each mark to the file
foreach (var mark in marks)

1
¥

writer.Writeline(mark);

*Remember to Close the StreamWriter as this releases the file to be accessed by other
processes/programs. Again due to the chance of exceptions, use a try/catch block with the
StreamWriter to ensure the program doesn’t crash if an exception occurs.

Example output shown below:

7 streamWriter.txt - Notepad = =
File Edit Format View Help

'\Iame: Matthew Dorrian ol
Age: 21

DOB: 17/12/1992
Course: BEng Software Engineering

Page 13

Practical 8 [PROGRAMMING USING C#]

Task 9: Using StreamReaders to read from a text file
Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Windows Forms Application and nameite.g. Prac08Tasks8.

Step 2: We want to write to a text file using a St reamReader. To do this, open the Program.cs
and we will create a StreamReader object which will write to a text file to the specified location.
StreamReader performs all the FileReader does in one statement as shown below:

//Create a StreamReader specifying the location of the file to open

StreamReader reader = new StreamReader("C:\\Users\\user\\Desktop\\streamWriter.txt");

Step 3: We want to print each line from the file to the console so we will use the ReadLine ()
method of the StreamReader to read each line:

//Read each line in the file
string line;
while ((line = reader.Readline())} !'= null)

Console.Writeline(line); // Write to console.

*Remember to Close the StreamReader as this releases the file to be accessed by other
processes/programs. Again due to the chance of exceptions, use a try/catch block with the
StreamReader to ensure the program doesn’t crash if an exception occurs.

Example output shown below:

BN CAWindows\system32\cmd.exe

ame: Matthew Dorrian

ge: 21
DOB: 17-12-,1992
ourse:= BEng Software Engineering

Prezs any key to continue .

Page 14

Practical 8 [PROGRAMMING USING C#]

EXERCISE 3

Task 10: Using Serialisation to write and read objects to and from a file
Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Windows Forms Application and nameite.g. Prac08Task9.

Step 2: We will create a Car class which will hold information about a car e.g. engineSize, make,
model and create an Owner class which will store the owner’s name and age. We have to tag the
classes as Serializable which means we can write objects to a file (Refer to Serialization in the
PowerPoint):

[5erializable]
public class Car

For the Serialization to work, there has to be a blank constructor but you can add your own
constructor to instantiate the object and have the variables set to public:

public string Make { get; set; }

//Custom Constructor

public Car(string make, string model, int year, Owner owner)

1
Make = make;
Model = model;
Year = year;
Owner = owner;
¥

//Blank Constructor needed for Serialization

public Car()
1

b

Step 3: Create instants of the Car class which will consist of the car’s details and the Owner object:

Owner owner = new Owner({"Matthew", "Dorrian™, 21);

Car car = new Car("Lamborghini®”, "Aventador", 2814, owner);

Step 4: To serialize the object to an XML file, we need to create an XmlSerializer object and
set the type of object the Serializer will expect e.g. Car. Open Program.cs and create the
XmlSerializer:

// Create a new XmlSerializer instance with the type of the test class
¥mlSerializer SerializerObj = new MmlSerializer(typeof(Car}};

e e e e L v e e e

Page 15

Step 5: Create a StreamWriter and specify where to write the xml file to. Use the Serialize
method of the XmlSerializer to write your object to the file location using the StreamWriter:

// Create a new file stream to write the serialized object to a file

//serialize method will serialize the object and write to the file
serializerObj.Serialize(WriteFileStream, car);

/{ Cleanup
WriteFileStream.Close();

*Remember to Close the XmIStreamWriter as this releases the file to be accessed by other
processes/programs. Again due to the chance of exceptions, use a try/catch block with the
XmIStreamWriter to ensure the program doesn’t crash if an exception occurs.

Example output shown below:

<?xml version="1.0" enceding="UTF-8"?>
- <Car xmins:xsd="http:/ /www.w3.0org/2001/XMLSchema" xmIns:xsi="http:/ fwww.w3.0org/2001/XMLSchema-instance">

<Make=Lamborghini</Make>

<Model>Aventador</Model=

<Year>2014</Year>

- <Owner>

<FirstName> Matthew < /FirstName>
<LastName>Dorrian</LastNamex
<Age>21</Age>

</Owner>

</Car>

Step 6: To deserialize the object from an XML file to assign to a variable, we need to create an
XmlSerializer object and set the type of object the Serializer will expect e.g. Car. Open
Program.cs and create the XmlSerializer:

/f Create a new XmlSerializer instance with the type of the test class
¥mlserializer SerializerObj = new XmlSerializer(typeof(Car)};

T v e N

Step 7: We need to read the XML file so to do this, we need to create a FileStream to read the

specified xml file:

// Create a new file stream for reading the XML file
FileStream ReadFileStream = new FileStream("C:\\Users\\user\\Desktop\\serializedObject.xml",

e e s S

FileMode.Open, FileAccess.Read, FileShare.Read);

Step 8: We will use the Deserialize method to read the xml from the file and cast the object
created from the stream to a Car and assign to a Car object. Next we will print out the details of the

returned Car object:

// Load the object saved above by using the Deserialize function
Car loadedCar = (Car)serializerObj.Deserialize(ReadFileStream);

//Call the PrintDetails of the Car to see the details of the car
loadedCar.PrintDetails();

Example output shown below:

B C\Windows\system32\cmd... ~ =

ake : Lamborghini
odel: Aventador
: 20814
Matthew Dorrian

[Press any key to continue . . .

Page 16

Practical 8

Task 11: Serialization
To get used to serialization, create a GUI project which will show the details of a deserialized Car

[PROGRAMMING USING C#]

object in a MessageBox. Example output shown below:

o Read my Car

_oEE

XML Deserialization “

Make: Larnborghini
Model: Aventadar
Year: 2014

Chwner: Matthew Dorrian

Age: 21

oK

Page 17

