
Practical 7 [PROGRAMMING USING C#]

 Page 1

EXERCISE 1
The tasks in the first part of this section provide step by step instructions on how to use inheritance

to create specific classes that is built upon a base class. This is followed by a number of tasks for you

to complete by applying the knowledge that you have previously gained.

TASK 1: Zoo Park (Without Inheritance)
This task requires you to create a console application which will print the details of several animals in

a zoo. We will write a Console Application to achieve this.

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Console Application and name it e.g.
ZooParkWithoutInheritance

Step 2: Right Click on Program.cs in the Solution explorer and rename to ZooPark.cs and select Yes

in the followed popup:

Step 3: As well as the ZooPark class which is where you will create the animal objects and print out

the details of them to the console, we need to create an animal class. Right click on the project,

select Add and click Class to add a new class:

Practical 7 [PROGRAMMING USING C#]

 Page 2

Name your new class Animal.cs and select Add:

This will create blank Animal class and add it to your project:

This class will be a blue print for what the animals in your zoo (objects) will contain. We will now add

several variables and methods to the Animal class.

Practical 7 [PROGRAMMING USING C#]

 Page 3

First and foremost, we will declare the attributes you would like the animal to have e.g. name, age

etc:

Now we will add a constructor to the Animal class that will allow you to create an instance of the

Animal class and allow the details of the Animal to be passed as variables to the constructor that will

assign the class variables to the parameters values:

We are now at the stage that we can create Animal objects in our ZooPark class so we will create

several animals:

We will know add methods to the Animal class that will allow each animal to perform several

coomon actions:

 Sleep(): a method to make the animal lie down and take a nap

 Eat(): a method to make the animal eat

 MakeNoise(): a method to allow the animal to make a sound

Practical 7 [PROGRAMMING USING C#]

 Page 4

Our class now allows the animals to eat, sleep and make a noise. However, what if the animal

requires to perform an action that is specify to the animal e.g. each animal makes a different noise

and eats different food.

We will now add these methods into our class:

Practical 7 [PROGRAMMING USING C#]

 Page 5

As you can see now the class is becoming quite cluttered and contains methods that not animals

need or will use. For example, wolves will not make an eagle noise or a lion noise but the animal

class contains methods to allow this:

We will now use inheritance to create a base Animal class which will give the animals everything

they have in common e.g. Name, Make a Noise and then create sub classes that inherit from the

base class that will contain more specific behaviours. E.g. Tiger class that inherits from the Animal

class.

Practical 7 [PROGRAMMING USING C#]

 Page 6

TASK 2: Zoo Park with Inheritance
This task requires you to create a console application which will print the details of several animals in

a zoo using inheritance. We will write a Console Application to achieve this.

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Console Application and name it e.g. ZooParkWithInheritance

Step 2: Right Click on Program.cs in the Solution explorer and rename to ZooPark.cs and select Yes

in the followed popup:

Step 3: Create a base Animal class similar to the Animal class in Task 1:

This base class contains all of the common attributes and behaviours that each animal wil have.

The Zoo contains several species of animal including Tigers, Lions, Eagles, Wolves and Hippos.

We will now have to create a class for each specific animal that will inherit from the Animal base

class.

Practical 7 [PROGRAMMING USING C#]

 Page 7

Step 4: Create a Lion class that inherits from the base Animal class. To do this, add a new class called

Lion.cs which will create a blank class:

To allow a class to inherit from a base class, the syntax is as follows:

Therefore to allow the Lion to inherit from the Animal class, change the class definition to the

following:

Let’s try to create an instance of each class to see if the Lion class does in fact inherit from the

Animal class. In ZooPark.cs, create an Animal and a Lion object:

If you try to access the public methods and variables of each, you can see that Lion has inherited all

of the public methods and attributes as shown below:

Practical 7 [PROGRAMMING USING C#]

 Page 8

Step 5: Create classes for a Tiger, a Wolf, an Eagle and a Hippo that all inherit from the base

Animal class.

Now you have subclasses for each animal that all inherit from the base Animal class.

The idea of inheritance implements the IS-A relationship. For example, Lion IS-A animal and Wolf IS-

A Animal.

Step 6: We now have the classes for each animal so it is time to add some attributes which are

unique to that animal. We will use the Tiger as an example.

Open the Tiger class and add attributes that only a tiger will have out of your animals, for

example, number of stripes or the species of Tiger:

Now if you try to access the public methods and variables of a Tiger object, you can see that Tiger

has inherited all of the public methods and attributes of Animal but also has its own specific

attributes as shown below:

Practical 7 [PROGRAMMING USING C#]

 Page 9

Step 7: Now add specific attributes to each of the subclasses of Animal e.g. Wolf can have an

average howl length etc.

Step 8: We now have the classes for each animal with specific Attributes so it is time to add some

methods which are unique to that animal. We will use the Eagle as an example.

Open the Eagle class and add methods that only an Eagle will have out of your animals, for

example, LayEgg:

Now if you try to access the public methods and variables of an Eagle object, you can see that Eagle

has inherited all of the public methods and attributes of Animal but also has its own specific

methods and attributes as shown below:

Step 9: Now add specific Methods to each of the subclasses of Animal e.g. join pack to hunt

Practical 7 [PROGRAMMING USING C#]

 Page 10

TASK 3: Different Animals make different noises
Tigers roar, wolves howl and as far we know hippo’s don’t make any sound at all. Each of the classes

that inherit from Animal will a have MakeNoise() method, but each of those methods will work a

different way and have different code.

When a subclass changes the behaviour of one of the methods that it inherited, we say that it

overrides the method.

So when you have a subclass that inherits from a base class, it must inherit all of the base behaviours

but you can modify them in the subclass so they are not performed exactly the same way. That’s

what overriding is all about.

Step 1: Continue working on your project from Task 2 from Exercise 1 and we will use the Tiger Class

as an example. To allow the base methods to be overridden, the base methods must be marked as

Virtual. A virtual method can be redefined. The virtual keyword designates a method that is

overridden in derived classes. Open the Animal class and mark the MakeNoise() method as Virtual

as shown below:

Step 2: Since the base MakeNoise() method is now virtual, we can override this method in the

Tiger class to allow the Tiger Object to ROAARRRR when the MakeNoise() method is called.

To do this, create a MakeNoise() method in the Tiger class and include the override keyword in

the method declaration as shown below:

Step 3: Call the MakeNoise() method on a Tiger object and an Animal object as shown below:

Practical 7 [PROGRAMMING USING C#]

 Page 11

Step 4: Override the MakeNoise() method in each subclass to perform the correct animal noise

e.g. Wolf howls.

Step 5: We will now override the Eat() method in the base class for the Tiger subclass to allow the

tiger to eat the correct amound of meat. First Mark the Eat() method as virtual in the base Animal

class:

Next create a Eat() method in the Tiger class and include the override keyword in the method

declaration as shown below to override the base method:

Step 6: Call the Eat() method on a Tiger object and an Animal object to view which method is

executed as shown below:

Step 7: Override the Eat() method in each subclass to allow each animal to eat the correct food and

the correct quantity e.g. Wolf eat 10lbs of Meat.

Step 8: Time to be creative so decide on a new method that the animal will perform. Add a new

method in the Animal class that can be overridden and then override the method in the subclasses

of the animals that can perform this action.

Example: Hippos can swim and love it but Wolves do not like to.

Practical 7 [PROGRAMMING USING C#]

 Page 12

TASK 4: Multiple inheritance
So Zoo Park is starting to take shape but could we make our inheritance tree better. At the moment

Lion and Tiger inherit from the base class Animal but since they are both Big Cats they will have

some common methods and attributes that are common to cats but not common to other animals

e.g. birds.

Why don’t we make a Feline class that inherits from Animal and make the Lion and Tiger inherit from

the Feline class instead of the Animal class which will contain all of the common methods and

attributes specific to Cats and also all from the Animal base class?

Step 1: Add the New Feline class that inherits from the base Animal class:

Step 2: Add the common Feline attributes and methods to the feline class e.g. Purr() and call to a

method of the Tiger class, the Feline class and the base Animal class as shown below:

As you can see, the Purr() method is executed in the Feline class, the Eat() override method is

executed in the Tiger class and the Sleep() method is executed in the base Animal class.

Step 3: The Zoo has a new arrival and it is a Penguin. Now add a new Bird class that inherits from

the base Animal class as there are now two birds that will share some common attributes and

methods e.g. wingspan and bird species.

Now add a new Penguin class that uses the Bird class and change the Eagle class to now inherit

from the Bird class instead of directly to the Animal base class.

Think of methods and attributes that only birds would have and methods and attributes that are

unique to each type of bird.

For example, you could add a Fly method in to the Bird class and in each subclass state if that bird

can fly or not by overriding the method.

Example code is shown on next page:

Practical 7 [PROGRAMMING USING C#]

 Page 13

TASK 5: WHAT’S THE OUTPUT?
You should try to work this out on paper and then transfer the code into Visual Studio and run it to

see what output you actually get. Remember that if you don’t get the answer you expect to check

both your workings on paper and the code.

a)

b)

Practical 7 [PROGRAMMING USING C#]

 Page 14

TASK 6: Overloading
Overloading is what happens when you have two methods with the same name but different

signatures.

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Console Application and name it e.g. Overloading

Step 2: Right Click on Program.cs in the Solution explorer and rename to Overloading.cs and select

Yes in the followed popup:

Step 3: Now we will add two methods that have the same name but the parameter list in the

method signature is different. This concept is Overloading:

We now have two methods that can be called by passing in one variable or two and print out the

variables to the Console.

Step 4: Call each method using different parameters and view the Console:

At compile time, the compiler works out which one it's going to call, based on the compile time types

of the arguments and the target of the method call e.g. if the method call contains a string and an

int, call the method that prints both.

Practical 7 [PROGRAMMING USING C#]

 Page 15

EXERCISE 2
The tasks in the second part of this section will use Windows Forms Applications to demonstrate

inheritance and to further enhance the use of GUI’s.

TASK 7: Sandwich Ordering

Step 1: Open the Visual Studio File menu, and then select New (or press Ctrl+Shift+n). Then

click on Project, select C# Windows Forms Application and name it e.g. SandwichOrdering.

Step 2: Right Click on Form1.cs in the Solution explorer and rename to SandwichOrdering.cs:

Step 3: Using the properties window, change the title of your form to something meaningful e.g.

Sandwich ordering:

Practical 7 [PROGRAMMING USING C#]

 Page 16

Step 4: We want to implement a solution that uses a base class and a more specific sandwich class

for a particular sandwich e.g. BLT. Firstly create a Sandwich base class that will contain the

common attributes and methods e.g. IsToasted, Calories:

Step 5: Next we want to create a subclass of Sandwich called BLT. This subclass will inherit all the

public methods and attributes from Sandwich but will have its own specific attributes and methods

e.g. SlicesOfBacon, SlicesOfTomato, AmountOfLettuce, ExtraBacon():

As you can see, BLT has all the methods and attributes of the Sandwich base class and its own

methods and attributes.

Step 6: Create the following GUI using the toolbox to add elements to the form e.g. Labels, Buttons.

You can reposition any element on the screen by clicking and dragging the element to the desired

location:

On the button click, we want to populate the My Sandwich label with details of a BLT sandwich that

has 2 slices of bacon, 2 slices of tomato and 4 pieces of Lettuce and this sandwich will be 400

Calories.

Practical 7 [PROGRAMMING USING C#]

 Page 17

Step 7: Double click on the Order Button (Rename button first to meaningful name using properties

window i.e. btnBTL) to create the click event method automatically:

Step 8: Add code to the click event method to create a BLT object and populate it using the public

attributes e.g. blt.SlicesOfBacon = 2. The finished form should look like the following:

(Hint: Create instance of BLT object and assign each variable with the required values e.g. 2 bacon

slices)

TASK 8: Sandwich Ordering with Input
Create a new project called SandwichOrderingImproved. Create a form that allows the User

to enter in the amount of each ingredient for their BLT e.g. slices of bacon and output the BLT in a

MessageBox. You will have to create the Sandwich and BLT class again. An example layout has

been show below but don’t be afraid to make your own:

Extra: Now update the GUI to allow the user to specify if the sandwich is toasted or not.

Practical 7 [PROGRAMMING USING C#]

 Page 18

TASK 9: CAN YOU SPOT THE ERROR?

a) public class Coca Cola ; FizzyDrink

{

}

b) Tiger tony = new Tiger();

Tiger.TigerSpecies = “Bengal Tiger”

c) public class FizzyDrink

{

 public void virtual TakeDrink()

{

}

}

d) public class Bear : Animal

{

 public overridden void Eat()

{

}

}

e) BLT sandwich = new BLT();

new sandwich.SlicesOfBacon = 5;

f) Bear bear = new Bear();

MessageBox.Show(“The Bear’s name is “ bear.Name + “ /n and he is ” +

bear.Height + “ feet tall);

Practical 7 [PROGRAMMING USING C#]

 Page 19

EXERCISE 3

TASK 10: Create a GUI version of Zoo park which will show the details of a Tiger, a

Lion and a Hippo in a MessageBox on a button click. Remember to create the base

Animal class, the subclasses for the animals and if two animals are say Cats, create

an in-between Feline class. Example UI is shown below but feel free to experiment

with the UI:

If you feel like you want to add more functionality, add a menu bar which shows you

stats on the Zoo in a Message Dialog e.g. Number of each animal and add more

animal subclasses e.g. Seal.

