EXERCISE 1

The tasks in the first part of this section provide step by step instructions on how to use inheritance
to create specific classes that is built upon a base class. This is followed by a number of tasks for you
to complete by applying the knowledge that you have previously gained.

TASK 1: Zoo Park (Without Inheritance)
This task requires you to create a console application which will print the details of several animals in
a zoo. We will write a Console Application to achieve this.

Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Console Application and nameite.g.
ZooParkWithoutInheritance

CH#
Console Application Visual C#

Mame: |ZocParkWitholutinheritance |

Step 2: Right Click on Program.cs in the Solution explorer and rename to ZooPark.cs and select Yes
in the followed popup:

fa] Solution 'ZooParkWithoutinheritance' [
4 ZooParkWithoutlnheritance
b & Properties
[=B References
¥ App.config
B ZooPark.cs

Step 3: As well as the ZooPark class which is where you will create the animal objects and print out
the details of them to the console, we need to create an animal class. Right click on the project,
select Add and click Class to add a new class:

m Selution ‘ZooParkWithoutinheritance' (

[E] 7aoParkWithoutInheritance
|:,| Build operties
Rebuild eferences
T pp.config
poPark.cs
View 3
Analyze 3
€ Publish...
Scope to This
New Solution Explorer View
., Showon Code Map
‘O MNew ltem.. Cirl+ Shift+ A Add ’
‘O Existing ltem... Shift+ Alt+A B Manage NuGet Packages...
4 Mew Folder £} Setas StartUp Project
Reference... Debug 3
Service Reference... % Cut Ctrl+X
8 Windows Form... Paste Ctrl+V
1 User Control... X Remove Del
b | Component... ¥z Rename
- % Class. Unload Project
a ¢® Open Folder in File Explorer
ice\ZooParkiithoutTnheritance\ZooPark.cs(9,11): | g Properties Alt+Enter

Page 1

Name your new class Animal . cs and select Add:

Add New ltem - ZooParkWithoutInheritance ?
4 |nstalled Sort by: Default - 5= Search Installed Templates (Ctrl+E) P~
Fl V\su;l Z}#Items L;ﬁ“ Class Visual C# ltems © Type: Visual C# ftems
Dote = An empty class definition
ata])
General o0 Interface Visual C# ltems
b Web
W:'wdows Forms Windows Form Visual C# ltems
WPF
SOL Server a.j User Control Visual C# ltems
Workflow
Graphics &I | Component Class Visual C# ltems
I+ Online a User Control (WPF) Visual C# ltems
>
About Box Visual C# ltems
q? ADO.NET Entity Data Model Visual C# ltems
?g Application Configuration File Visual C# ltems
Application Manifest File Visual C# ltems
e P e
Click here to go online and find templates.
MName: [Animal.cd
Add || Cancel
This will create blank Animal class and add it to your project:
-hsing System; ,
using System.Collections.Generic; fal Solution 'ZooParkWithoutinheritance' (1
using System.Ling; d ZooParkWithoutlnheritance
using System.Text; i
using System.Threading.Tasks; [.F PFI:IFIEI"tIES

[=B References

Inamespace ZoeoParkWithoutInheritance

o Poc® Animal.cs
class Animal ¥ App.config
% Poc* FooPark.cs
1

This class will be a blue print for what the animals in your zoo (objects) will contain. We will now add
several variables and methods to the Animal class.

Page 2

First and foremost, we will declare the attributes you would like the animal to have e.g. name, age
etc:

namespace ZooParkWithoutInheritance

1

class Animal

1
//variable Declaration
private string Name;
private string Diet;
private string Location;
private double Weight;
private int Age;
private string Colour;

H

Now we will add a constructor to the Animal class that will allow you to create an instance of the
Animal class and allow the details of the Animal to be passed as variables to the constructor that will
assign the class variables to the parameters values:

//Custom constructor that requries details to be passed as parameters to instantiate the

public Animal(string name, string diet, string location, double weight, int age, string colour)
1
//Assign each parameter to each variable
Name = name;
Diet = diet;
Location = location;
Weight = weight;
Age = age;
Colour = colour;

We are now at the stage that we can create Animal objects in our ZooPark class so we will create
several animals:

class ZooPark

{
static wvoid Main(string[] args)
1
//Creation of three animals using the Animal censtructor
Animal williamWolf = new Animal("William the Wolf", "Meat™, "Dog Village", 5@.6, 9, "Grey");
Animal tonyTiger = new Animal("Tony the Tiger™, "Meat™, "Cat Land”, 118, 6, "Orange and White™);
Animal edgarEagle = new Animal("Edgar the Eagle™, "Meat/Insects/Berries”, "Bird Mania", 28, 15, "Black");
1
3

We will know add methods to the Animal class that will allow each animal to perform several
coomon actions:

o Sleep(): a method to make the animal lie down and take a nap
e FEat(): a method to make the animal eat
e MakeNoise(): a method to allow the animal to make a sound

Page 3

public woid Sleep()
1

/{Code to allow the animal to sleep

public woid MakeNoise()

1
¥

/fCode to allow the animal to make a noise

Our class now allows the animals to eat, sleep and make a noise. However, what if the animal

requires to perform an action that is specify to the animal e.g. each animal makes a different noise

and eats different food.

We will now add these methods into our class:

{

/{Cade to allow lions to roar
s
public woid MakeEagleNoise()
{

//Code to allow eagles to cry
h
public wvoid MakeWolfNoise()
i

//Caode to allow wolves to howl
s
public woid EatMeat()
{

f{Code to allow animals to eat meat
ks

//Code to allow animals to eat berries

Page 4

As you can see now the class is becoming quite cluttered and contains methods that not animals
need or will use. For example, wolves will not make an eagle noise or a lion noise but the animal
class contains methods to allow this:

williamWolf.MakeWolfNoise();
williamWolf.MakeEagleNoise();
williamWolf.MakeLionNoise();

We will now use inheritance to create a base Animal class which will give the animals everything
they have in common e.g. Name, Make a Noise and then create sub classes that inherit from the
base class that will contain more specific behaviours. E.g. Tiger class that inherits from the Animal
class.

Page 5

TASK 2: Zoo Park with Inheritance
This task requires you to create a console application which will print the details of several animals in
a zoo using inheritance. We will write a Console Application to achieve this.

Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Console Application and nameite.g. ZooParkWithInheritance

C#
Console Application Visual C#

Marme: |ZooParkWithInheritance] |

Step 2: Right Click on Program.cs in the Solution explorer and rename to ZooPark.cs and select Yes
in the followed popup:

fa] Solution ZooParkWithInheritance' (1 pro
4 ZooParkWithInheritance
& Properties
[+ =B References
¥ App.config
P c* ZooPark.cs

Step 3: Create a base Animal class similar to the Animal class in Task 1:

class Animal

{
JfiVariable Declaration
public string MName;
public string Diet;
public string Location;
public double Weight;
public int Age;
public string Colour;
I

ﬁuhiig-ﬁoid Eat()
{

/fCode to allow the animal to eat
¥

bubiig-ﬁoid MakeNoise()
{

//Code to allow the animal to make a noise

by

ﬁuhiig-ﬁoid Sleep()
{
/fCode to allow the animal to sleep

¥

This base class contains all of the common attributes and behaviours that each animal wil have.
The Zoo contains several species of animal including Tigers, Lions, Eagles, Wolves and Hippos.

We will now have to create a class for each specific animal that will inherit from the Animal base
class.

Page 6

Step 4: Create a Lion class that inherits from the base Animal class. To do this, add a new class called
Lion.cs which will create a blank class:

namespace ZooParkWithInheritance

{ P S
élgég _ZEn
{l
1

1

To allow a class to inherit from a base class, the syntax is as follows:

class SubClazs @ BaseClass

1
¥

Therefore to allow the Lion to inherit from the Animal class, change the class definition to the
following:

//Lion now inherits all public attributes and methods from the Animal base class

class Lion : Animal

1
b

Let’s try to create an instance of each class to see if the Lion class does in fact inherit from the
Animal class. In ZooPark.cs, create an Animal and a Lion object:

static woid Main(string[] args)

1
J//Creating base Animal object
Animal basefnimal = new Animalf(};
J//Creating Lion cbject that inherits from Animal
Lien lion = new Licn(};
b

If you try to access the public methods and variables of each, you can see that Lion has inherited all
of the public methods and attributes as shown below:

base.ﬂmimal.l lion.
- |Age |A int Animal Age » |AgE “int Animal.Age
@ Colour @ Colour
@ Diet @ [Diet
P Eat i Eat
@ Equals @ Equals
fp GetHashCode @ GetHashCode
g GetType @ GetType
@ Location @ |ocation
D MakeMoise - i MakeMoise -

Page 7

Step 5: Create classes fora Tiger, aWolf, an Eagle and a Hippo that all inherit from the base
Animal class.

4 ZooParkWithlnheritance
& Properties
[+ =N References
Bo# Animal.cs

//Creating base Animal object
Animal basefnimal = new Animal();

¥_1 App.config Lion lion = new Licn();
[Eagle.cs Eagle eagle = new Eagle();
P c* Hippo.cs Hippo hippo = new Hippo();
b £* Lion.cs Tiger tiger = new Tiger();
b c* Tiger.cs Wolf wolf = new Wolf();

[[Wolf.cs

[c#* FZooPark.cs

Now you have subclasses for each animal that all inherit from the base Animal class.

The idea of inheritance implements the IS-A relationship. For example, Lion IS-A animal and Wolf IS-
A Animal.

Step 6: We now have the classes for each animal so it is time to add some attributes which are
unique to that animal. We will use the Tiger as an example.

Open the Tiger class and add attributes that only a tiger will have out of your animals, for
example, number of stripes or the species of Tiger:

J/Tiger now inherits all public attributes and methods from the Animal base class

class Tiger : Animal

1
f/Declaration of Attributes unique to a Tiger
public string TigerSpecies;
public int NumberOfStripes;

¥

Now if you try to access the public methods and variables of a Tiger object, you can see that Tiger
has inherited all of the public methods and attributes of Animal but also has its own specific
attributes as shown below:

Tiger tiger = new Tiger();
tigEFJ

GetType o
Location

MakeMoise

Mame

Sleep

Tigerspecies

TobString

Weight -

toeo e LaLo

Page 8

Step 7: Now add specific attributes to each of the subclasses of Animal e.g. Wolf can have an

average howl length etc.

Step 8: We now have the classes for each animal with specific Attributes so it is time to add some

methods which are unique to that animal. We will use the Eagle as an example.

Open the Eagle class and add methods that only an Eagle will have out of your animals, for

example, LayEgg:

/fEagle now inherits all public attributes and methods from the Animal base class

class Eagle : Animal
1
//Declaration of Attributes unique to a Eagle
public string EagleSpecies;
public double WingSpan;
public double TalenLength;

public wvoid LayEgg()
1

}

//Code to allow Eagle to Lay an Egg

public woid Fly()
1

A

//Code to allow Eagle to Fly

public wveoid Soar()

1
¥

//Code to allow Eagle to Soar

h

Now if you try to access the public methods and variables of an Eagle object, you can see that Eagle

has inherited all of the public methods and attributes of Animal but also has its own specific

methods and attributes as shown below:

Eagle eagle = new Eagle();
eagle.

GetType <
LayEgg

Location

MakeMoise

Mame

Sleep

void Eagle.Soar()
TalenlLength
ToString -

oL

Step 9: Now add specific Methods to each of the subclasses of Animal e.g. join pack to hunt

Page 9

Practical 7 [PROGRAMMING USING C#]

TASK 3: Different Animals make different noises

Tigers roar, wolves howl and as far we know hippo’s don’t make any sound at all. Each of the classes
that inherit from Animal will a have MakeNoise() method, but each of those methods will work a
different way and have different code.

When a subclass changes the behaviour of one of the methods that it inherited, we say that it
overrides the method.

So when you have a subclass that inherits from a base class, it must inherit all of the base behaviours
but you can modify them in the subclass so they are not performed exactly the same way. That’s
what overriding is all about.

Step 1: Continue working on your project from Task 2 from Exercise 1 and we will use the Tiger Class
as an example. To allow the base methods to be overridden, the base methods must be marked as
Virtual. A virtual method can be redefined. The virtual keyword designates a method that is
overridden in derived classes. Open the Animal class and mark the MakeNoise() method as Virtual
as shown below:

Fivirtual method to allow overriding in subclasses

public virtual void MakeMoise()

{
Console.WriteLine("Noise");

¥
Step 2: Since the base MakeNoise() method is now virtual, we can override this method in the
Tiger class to allow the Tiger Object to ROAARRRR when the MakeNoi se() method is called.

To do this, create a MakeNoise() method in the Tiger class and include the override keyword in
the method declaration as shown below:

ffMethod to override the base MakeNoise method in Animal

public override woid MakeNoise()

1
h

Conscle.Writeline("ROARRRRRRRRRRR") ;

Step 3: Call the MakeNoise() method on a Tiger object and an Animal object as shown below:

Animal baseAnimal = new Animal();
Tiger tiger = new Tiger();

tiger.MakeNoise(); //Call to override method
baseAnimal.MakeNoise(); //Call to base method

Conscle.ReadKey();
ROORRRERERRERR
nise

Page 10

Step 4: Override the MakeNoise() method in each subclass to perform the correct animal noise
e.g. Wolf howls.

Step 5: We will now override the Eat() method in the base class for the Tiger subclass to allow the
tiger to eat the correct amound of meat. First Mark the Eat() method as virtual in the base Animal
class:

Fivirtual method to allow overridinmg in subclasses

public wirtual void Eat()
{

Console.WriteLine("Eat");

h

Next create a Eat() method in the Tiger class and include the override keyword in the method
declaration as shown below to override the base method:

ffMethod to override the base Eat method in Animal

public override wvoid Eat()

1
h

Conscle.Writeline({"Eat 28lbs of Meat™);

Step 6: Call the Eat() method on a Tiger object and an Animal object to view which method is
executed as shown below:

Animal basefnimal = new Animal();
Tiger tiger = new Tiger();

tiger.Eat(); //Call to override method
basefnimal.Eat(); //Call to base method

Conscle.ReadKey();

Eat 281bhsz of Heat
Eat

Step 7: Override the Eat() method in each subclass to allow each animal to eat the correct food and
the correct quantity e.g. Wolf eat 10lbs of Meat.

Step 8: Time to be creative so decide on a new method that the animal will perform. Add a new
method in the Animal class that can be overridden and then override the method in the subclasses
of the animals that can perform this action.

Example: Hippos can swim and love it but Wolves do not like to.

Page 11

Practical 7 [PROGRAMMING USING C#]

TASK 4: Multiple inheritance

So Zoo Park is starting to take shape but could we make our inheritance tree better. At the moment
Lion and Tiger inherit from the base class Animal but since they are both Big Cats they will have
some common methods and attributes that are common to cats but not common to other animals
e.g. birds.

Why don’t we make a Feline class that inherits from Animal and make the Lion and Tiger inherit from
the Feline class instead of the Animal class which will contain all of the common methods and
attributes specific to Cats and also all from the Animal base class?

Step 1: Add the New Feline class that inherits from the base Animal class:

Animal basefnimal = new Animal(); //Base Class
Feline feline = new Feline(); //Inherits from Animal

Step 2: Add the common Feline attributes and methods to the feline class e.g. Purr() and call to a
method of the Tiger class, the Feline class and the base Animal class as shown below:

Animal basefnimal = new Animal(); //Base Class
Feline feline = new Feline(); //Inherits from Animal
Tiger tiger = new Tiger(); //Inherits from Feline and Animal

tiger.Purr(); //Call toc Purr method in Feline Class
tiger.Eat(); //Call to override method in Tiger Class
tiger.Sleep(); //Call to base method

As you can see, the Purr() method is executed in the Feline class, the Eat() override method is
executed in the Tiger class and the S1eep() method is executed in the base Animal class.

Step 3: The Zoo has a new arrival and it is a Penguin. Now add a new Bird class that inherits from
the base Animal class as there are now two birds that will share some common attributes and
methods e.g. wingspan and bird species.

Now add a new Penguin class that uses the Bird class and change the Eagle class to now inherit
from the Bird class instead of directly to the Animal base class.

Think of methods and attributes that only birds would have and methods and attributes that are
unique to each type of bird.

For example, you could add a Fly method in to the Bird class and in each subclass state if that bird
can fly or not by overriding the method.

Example code is shown on next page:

Page 12

Eagle eagle = new Eagle();
Penguin penguin = new Penguin();

eagle.Fly(}; //Call to override method in Eagle Class
penguin.Fly(}; //Call to override method in Penguin Class

penguin.BirdSpecies = "Penguin"; //Assigning wvariable in Bird class
penguin.PenguinSpecies = "Emperor Penguin®; //&ssigning wvariable in Penguin class

Conscle.WriteLine(penguin.BirdSpecies); //Output BirdSpecies from Bird class
Conscle.WritelLine(penguin.PenguinSpecies}); //Output PenguinSpecies from Penguin class

Eagles can fly

Emperor Penguin

TASK 5: WHAT’S THE OUTPUT?
You should try to work this out on paper and then transfer the code into Visual Studio and run it to
see what output you actually get. Remember that if you don’t get the answer you expect to check

both your workings on paper and the code.
class A class B @ A
{ i class C: B
public wirtual void ml() public override void ml{) {
1 . .
{ Console.Mriteline("A's M1"); Console.WriteLine("B's M1"); ?"bllc veid ml()
b } Console.WriteLine("C's M1");
}
public void m2() public woid m2() }
i i
Console.Writeline("A's M2"); Console.WriteLine("B's M2");
; }
} }
a) Aa = new A();
E b = new B();
Cc=new C();
a.m1();]
b.ml();
b) Aa = new A();
Eb=new B();
Cc=new C();
a.m2();
b.m2();
c.ml(};
c.m2();

Page 13

Practical 7 [PROGRAMMING USING C#]

TASK 6: Overloading
Overloading is what happens when you have two methods with the same name but different
signatures.

Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Console Application and nameite.g. Overloading

Console Application Visual C#

Step 2: Right Click on Program.cs in the Solution explorer and rename to Overloading.cs and select
Yes in the followed popup:

fa] Solution 'Overloading' (1 project)
4 [t Overloading
b & Properties
[=B References
¥ App.config
¢ Owverloading.cs

Step 3: Now we will add two methods that have the same name but the parameter list in the
method signature is different. This concept is Overloading:

public static wvoid methodToBeOverloaded(string name)

1
Console.Writeline("Name: " + name);
}
public static wvoid methodToBeOverloaded(string name, int age)
1
Conscle.WriteLline("Name: " 4+ name + "‘\nAge: " + age);
}

We now have two methods that can be called by passing in one variable or two and print out the
variables to the Console.

Step 4: Call each method using different parameters and view the Console:

methodToBeOverloaded({"Matthew Dorrian®™);

ame is: Matthew Dorrian

methodToBeOverloaded("Matthew Dorrian™, 21);

ame: Matthew Dorrian

ge: 21

At compile time, the compiler works out which one it's going to call, based on the compile time types
of the arguments and the target of the method call e.g. if the method call contains a string and an
int, call the method that prints both.

Page 14

Practical 7 [PROGRAMMING USING C#]

EXERCISE 2

The tasks in the second part of this section will use Windows Forms Applications to demonstrate
inheritance and to further enhance the use of GUI’s.

TASK 7: Sandwich Ordering

Step 1: Open the Visual Studio File menu, and then select New (or press Ctr1+Shift+n). Then
click on Project, select C# Windows Forms Application and nameite.g. SandwichOrdering.

New Project B
P Recent |,|'~,||:_‘|' Framewaork 4.5 -| Sort by: |Defau|t -| 5= Search Installed Templates (Ctrl+E) P~
4 |nstalled c# ~ o i
| | Windows Forms Application Visual C# Type: Visual C=
-
4 Templates A project for creating an application with a
C3 -
b Visual Basic r_‘l WPF Application Visual C# Windows Forms user interface
- <
4 Visual C#

J—"

Step 2: Right Click on Form1.cs in the Solution explorer and rename to SandwichOrdering.cs:

fad Solution 'SandwichOrdering' (1 project)
4 SandwichOrdering
b & Properties
[+ =B References
v.] App.config
B o Program.cs

b SandwichOrdering.cs

Step 3: Using the properties window, change the title of your form to something meaningful e.g.
Sandwich ordering:

o2 Sandwich Ordering | = | = |

Page 15

Step 4: We want to implement a solution that uses a base class and a more specific sandwich class
for a particular sandwich e.g. BLT. Firstly create a Sandwich base class that will contain the
common attributes and methods e.g. IsToasted, Calories:

Sandwich sandwich = new Sandwich(};
sandwich.

|Ca|u:urie5 | int Sandwich.Calories
Equals

GetHashCode
GetType
|sToasted
SlicesOfBread
ToString

20 C¢CeeaR

Step 5: Next we want to create a subclass of Sandwich called BLT. This subclass will inherit all the
public methods and attributes from Sandwich but will have its own specific attributes and methods
e.g. SlicesOfBacon, SlicesOfTomato, AmountOfLettuce, ExtraBacon():

BLT bltSandwich = new BLT();
bltSandwich.

Equals -
ExtraBacon
GetHashCode

GetType

|sToasted
PiecesOFLettuce
SlicesOfBacon
SlicesOfBread

SlicesCfTomato -

Tttt eoa

As you can see, BLT has all the methods and attributes of the Sandwich base class and its own
methods and attributes.

Step 6: Create the following GUI using the toolbox to add elements to the form e.g. Labels, Buttons.
You can reposition any element on the screen by clicking and dragging the element to the desired
location:

a2 Sandwich Ordering - O

| My Sandwich:

On the button click, we want to populate the My Sandwich label with details of a BLT sandwich that
has 2 slices of bacon, 2 slices of tomato and 4 pieces of Lettuce and this sandwich will be 400
Calories.

Page 16

Practical 7 [PROGRAMMING USING C#]

Step 7: Double click on the Order Button (Rename button first to meaningful name using properties
window i.e. btnBTL) to create the click event method automatically:

private woid btnBLT Click(cbject sender, Eventérgs e)

1
¥

JfGenerated click event method

Step 8: Add code to the click event method to create a BLT object and populate it using the public
attributese.g. blt.SlicesOfBacon = 2. The finished form should look like the following:

ol Sandwich Ordering = =

My Sandwich: BLT with 2 slices of bacon, 2 slices of tomato and will be 400 calories.

(Hint: Create instance of BLT object and assign each variable with the required values e.g. 2 bacon
slices)

TASK 8: Sandwich Ordering with Input

Create a new project called SandwichOrderingImproved. Create a form that allows the User
to enter in the amount of each ingredient for their BLT e.g. slices of bacon and output the BLT in a
MessageBox. You will have to create the Sandwich and BLT class again. An example layout has
been show below but don’t be afraid to make your own:

o) BiTHeaven - O HEM

Slices of Bread: |2

4k

Slices of Bacon: |2

4k

Slices of Tomato: |2 =

Mumber of Calories; | 400

Make BLT

My BLT

BLT with 2 slices of bread, 3 slices of bacon, 2 slices of torato and will be 400
calories,

Extra: Now update the GUI to allow the user to specify if the sandwich is toasted or not.

Page 17

TASK 9: CAN YOU SPOT THE ERROR?

a) public class Coca Cola ; FizzyDrink

{
}

b) Tiger tony = new Tiger();
Tiger.TigerSpecies = “Bengal Tiger”

c) public class FizzyDrink

{
public void virtual TakeDrink()
{
}

}

d) public class Bear : Animal

{
public overridden void Eat()
{
}

}

e) BLT sandwich = new BLT();
new sandwich.SlicesOfBacon = 5;

f) Bear bear = new Bear();
MessageBox.Show(“The Bear’s name is “ bear.Name + “ /nand he is ” +
bear.Height + “ feet tall);

Page 18

Practical 7 [PROGRAMMING USING C#]

EXERCISE 3

TASK 10: Create a GUI version of Zoo park which will show the details of a Tiger, a
Lion and a Hippo in a MessageBox on a button click. Remember to create the base
Animal class, the subclasses for the animals and if two animals are say Cats, create

an in-between Feline class. Example Ul is shown below but feel free to experiment
with the Ul:

o Zoo Park = B
Lion Tiger Hippa
Leonardo the Lion's Details

My name is Leonarde the Lion and | am 14 years old.
| eat 15lbs of Meat and | live at Cat Land.
| am a African Lion and | am Yellow

LIONMM ROARRRRRRRRRRR

Benji the Bengal Tiger's Details

My name is Benji the Bengal Tiger and | am 13 years old.
| eat 20lbs of Meat and | live at Cat Land.
I am a Bengal Tiger and | am Orange and Black

TIGER ROARRRRRRRRRRR

Harry the Hippo's Details

My name is Harry the Hippo and | am 25 years old.
| Eat 20Ibs of Hay and | live at Hippe Ville,

I'am a Pygmy Hippo and | am Grey

| swim lots and weigh 140kgs

If you feel like you want to add more functionality, add a menu bar which shows you
stats on the Zoo in a Message Dialog e.g. Number of each animal and add more
animal subclasses e.g. Seal.

Page 19

