
Objects Tutorial [PROGRAMMING USING C#]

 Page 1

EXERCISE 1

In this tutorial, you will practice how to create objects based upon a farmyard scenario. You will learn how to create a

blueprint class for each type of animal on the farm and a Tester class which will allow you to create your objects and call

/ assign data to your variables. You will learn to do this without a constructor.

Your farm will have 2 dogs, 2 cats and 2 horses. You will create the following files:

Dog.java Cat.java Horse.java FarmTester.java

variables

additional methods

variables

additional methods

variables

additional methods

Main method

Create your objects and
pass in data

Print out the stored details
on each object.

TASK 1: CREATING OBJECTS WITHOUT THE USE OF A CONSTRUCTOR

Step 1:

Open Visual Studio. Select File>New>Project. Choose Visual C# and C# Console Application. Name the project

Farmyard and select finish.

Objects Tutorial [PROGRAMMING USING C#]

 Page 2

Step 2:

Next, you will add the class files to the Solution, by right clicking on the Solution name in the Solution Explorer and going to

Add-> New Class

Objects Tutorial [PROGRAMMING USING C#]

 Page 3

Call this Dog.

This class will act as a blueprint for and will allow you to create objects of type Dog. You do not need to have a main method here

as this is a blueprint class and within this class. Within this class, you will have your variables and methods that every dog object

will have. Once the class is created, it should look like this:

Repeat step to create a blueprint class for your Horse and Cat objects.

Objects Tutorial [PROGRAMMING USING C#]

 Page 4

Your Program class will be your tester file and will be the one that contains the main method. This will be the file where you will

create your objects and also where you will call and pass data to your methods. It will be the file that you will compile and run. It will

look like this initially.

Step 4:

Inside the Dog, Horse and Cat classes you must declare public variables which will be the fields of the class e.g. the

dog/cat/horse’s name, age and the colour. Initially you will create your dog, horse and cat objects without the use of a constructor

by accessing the public variables you create here.

public String catName;

public String catColour;

public int catAge;

public String dogName;

public String dogColour;

public int dogAge;

public String horseName;

public String horseColour;

public int horseAge;

Objects Tutorial [PROGRAMMING USING C#]

 Page 5

Step 5:

Next, within the dog, horse and cat class you will create a method that will output the sound that the cat/horse/dog will

make onto the console.

public void makeNoise(){

Console.WriteLine("Meooww");

 }

public void makeNoise(){

Console.WriteLine("Woof");

 }

public void makeNoise(){

Console.WriteLine("Neigh");

 }

Within this section, you must also create a print method that will allow you to output the contents of the variables for each object

that you create onto the screen.

public void printDetails(){

Console.WriteLine(

"Cat Details are as

follows: \nCat Name: " +

catName

+ "\nCat Colour: "

+catColour +"\nCat Age: " +

catAge);

 }

public void printDetails(){

Console.WriteLine("Dog

Details are as follows:

\nDog Name: " + dogName

+ "\nDog Colour: "

+dogColour + "\nDog Age: "

+ dogAge);

 }

public void printDetails(){

Console.WriteLine("Horse

Details are as follows:

\nHorse Name: "+horseName

+ "\nHorse Colour: "

+horseColour + "\nHorse

Age: " + horseAge);

 }

Step 6:
Your class files should now look like this:

Cat.java public class Cat {

 public String catName;

 public String catColour;

 public int catAge;

 public void makeNoise(){

 Console.WriteLine("Meow");

 }

 public void printDetails(){

Console.WriteLine("Cat Details are as follows: \nCat Name: " +

catName + "\nCat Colour: " +catColour +"\nCat Age: " + catAge);

 }

}

Horse.java public class Horse {

 public String horseName;

 public String horseColour;

 public int horseAge;

 public void makeNoise(){

 Console.WriteLine("Neigh");

 }

 public void printDetails(){

Console.WriteLine("Horse Details are as follows: \nHorse Name:

"+horseName + "\nHorse Colour: " +horseColour + "\nHorse Age: " + horseAge);

}

}

Objects Tutorial [PROGRAMMING USING C#]

 Page 6

Dog.java public class Dog {

 public String dogName;

 public String dogColour;

 public int dogAge;

 public void makeNoise(){

 Console.WriteLine("Woof Woof!");

 }

public void printDetails(){

Console.WriteLine("Dog Details are as follows: \nDog Name: " + dogName

+ "\nDog Colour: " +dogColour + "\nDog Age: " + dogAge);

 }

}

Step 7:

You will now need to navigate to your Program class which contains the main method. This is the class in which you will create

your objects. First create a dog object. We use the class name first followed by the name we supply for the object, call it dogOne.

Follow this with an equal’s sign and then using the new keyword finished by referencing the class again.

Create another dog object and also objects of type horse and cat.

Step 8:

You can now set the properties of your objects. First, use the name of your object followed by a dot. Next, you must select the

relevant property that you want to set e.g. dogName. Then use an equals sign followed by the value you want to set it to. Make

sure you pay attention to the data type of the property you are setting so that you supply a correct value.

dogOne.dogName = "Marley";

dogOne.dogColour = "Brown";

dogOne.dogAge = 4;

dogTwo.dogName = "Rue";

dogTwo.dogColour = "Black";

dogTwo.dogAge = 3;

catOne.catName = "Tillums";

catOne.catColour = "Black";

catOne.catAge = 5;

Objects Tutorial [PROGRAMMING USING C#]

 Page 7

catTwo.catName = "Scoop";

catTwo.catColour = "Grey";

catTwo.catAge = 7;

horseOne.horseName = "Shergar";

horseOne.horseColour = "Brown";

horseOne.horseAge = 10;

horseTwo.horseName = "Angus";

horseTwo.horseColour = "Black";

horseTwo.horseAge = 6;

Step 9:

Now call your printDetails method for each object to print out the details. You first use the name of the object followed by a dot and

then the method name. There are no arguments for printDetails so the brackets at the end of the statement will be empty.

Step 10:

Save your code by selecting File>Save All or using the shortcut Ctrl+Shift+S.

Now run your project by selecting the run button from the toolbar or using the shortcut Ctrl+F5

Objects Tutorial [PROGRAMMING USING C#]

 Page 8

Example output is shown below.

Objects Tutorial [PROGRAMMING USING C#]

 Page 9

EXERCISE 2 – CREATING OBJECTS (SET METHODS)

Your farm will have 2 dogs, 2 cats and 2 horses. You will create the following files:

Dog.java Cat.java Horse.java FarmTester.java

private variables

getters

setters

additional methods

private variables

getters

setters

additional methods

private variables

getters

setters

additional methods

Main method

Create your objects and
pass in data

Print out the stored details
on each object.

Step 1:

 Create a new project, C# Console Application. Name it FarmyardSetMethods and click Finish.

Create a new class and call it Dog. This is what the class will look like when it is initially created.

Repeat step to create a blueprint class for your Horse and Cat objects.

Objects Tutorial [PROGRAMMING USING C#]

 Page 10

Step 2:

Inside the Dog, Horse and Cat classes you must declare private variables which will be the fields of the class e.g. the

dog/cat/horse’s name, age and the colour. This is what each of your classes will look like after creating the variables.

public class Dog

{

private String dogName;

private String dogColour;

private int dogAge;

}

public class Cat

{

private String catName;

private String catColour;

private int catAge;

}

public class Horse

{

private String horseName;

private String

horseColour;

private int horseAge;

}

Step 3:

Now inside each of your classes for the animals you will create set methods which when called will allow you to set the properties

of the object you have created. You will need a set method for each individual field of the object you wish to set. The set method

accepts a parameter e.g. String newName. The data type will be the same as the field that you are changing. We set the field to

equal the value of the parameter thus passing in values from another class and setting the properties of our object.

public void setName(String

newName)

{

 dogName = newName;

}

public void setColour(String

newColour)

{

 dogColour = newColour;

}

public void setAge(int newAge)

{

 dogAge = newAge;

}

public void setName(String

newName)

{

 catName = newName;

}

public void

setColour(String newColour)

{

 catColour = newColour;

}

public void setAge(int

newAge)

{

 catAge = newAge;

}

public void setName(String

newName)

{

 horseName = newName;

}

public void setColour(String

newColour)

{

 horseColour = newColour;

}

public void setAge(int newAge)

{

 horseAge = newAge;

}

Step 4:

Underneath your set methods you will need to create get methods which when called will return the relevant values of your

objects properties. We will use the get methods in collaboration with the printDetails which will be created later.

Objects Tutorial [PROGRAMMING USING C#]

 Page 11

Step 5:

 Next, within the dog, horse and cat class you will create a method that will output the sound that the cat/horse/dog will make onto

the console.

public void makeNoise(){

Console.WriteLine("Woof");

 }

public void makeNoise(){

Console.WriteLine("Meooww");

 }

public void makeNoise(){

Console.WriteLine("Neigh");

 }

Step 6:

Create a printDetails method in each class using the get methods created above. Here is the code.

public void printDetails(){

Console.WriteLine("Dog

Details are as follows:

\nDog Name: " + getName()

+ "\nDog Colour: "

+getColour() + "\nDog Age:

" + getAge());

 }

public void printDetails(){

Console.WriteLine("Horse

Details are as follows:

\nHorse Name: "+getName()

+ "\nHorse Colour: "

+getColour() + "\nHorse Age:

" + getAge());

 }

public void printDetails(){

Console.WriteLine(

"Cat Details are as

follows: \nCat Name: " +

getName()

+ "\nCat Colour: "

+getColour() +"\nCat Age: "

+ getAge());

 }

Step 7:

Navigate to your tester class which contains your main method. Here you will again create two objects of each animal class but

this time use the set methods that you created to set the properties of the objects.

Reference the object’s name followed by a dot to access the set method. Then inside a set of brackets supply the value that you

want to be set to the property.

dogOne.setName("Fido");

dogOne.setColour("Brown");

dogOne.setAge(5);

dogTwo.setName("Rue");

dogTwo.setColour("Black");

dogTwo.setAge(2);

catOne.setName("Molly");

catOne.setColour("Brown");

catOne.setAge(6);

Objects Tutorial [PROGRAMMING USING C#]

 Page 12

catTwo.setName("Jasper");

catTwo.setColour("White");

catTwo.setAge(1);

horseOne.setName("Angus");

horseOne.setColour("Tan");

horseOne.setAge(3);

horseTwo.setName("Angie");

horseTwo.setColour("Grey");

horseTwo.setAge(1);

You can call these set methods again and again to change the properties of your objects e.g. we wanted to change the age of our

dogOne to 6 we would simply call the setAge for that object and supply 6 as the parameter. Try changing some of the values to

get experience using these methods.

dogOne.setAge(6);

Step 8:

Call your printDetails method by using the object’s name followed by a ‘.’ and then the name of the method.

Step 9:

Save your work by selecting File>Save All or using the shortcut Ctrl+Shift+S. Then run your project using the Run

button on the toolbar or using the shortcut Ctrl+F5.

Example output is shown below.

Objects Tutorial [PROGRAMMING USING C#]

 Page 13

EXERCISE 3 – USING A CONSTRUCTOR

Your farm will have 2 dogs, 2 cats and 2 horses. You will create the following files:

Dog.java Cat.java Horse.java FarmTester.java

private variables

constructor

getters

setters

additional methods

private variables

constructor

getters

setters

additional methods

private variables

constructor

getters

setters

additional methods

Main method

Create your objects and
pass in data

Print out the stored details
on each object.

Step 1:

 Create a new project, C# Console Application. Name it FarmyardConstructor and click Finish.

Create a new class and call it Dog. This is what the class will look like when it is initially created.

Repeat step to create a blueprint class for your Horse and Cat objects.

Objects Tutorial [PROGRAMMING USING C#]

 Page 14

Step 2:

Inside the Dog, Horse and Cat classes you must declare private variables which will be the fields of the class e.g. the

dog/cat/horse’s name, age and the colour. This is what each of your classes will look like after creating the variables.

public class Dog

{

private String dogName;

private String dogColour;

private int dogAge;

}

public class Cat

{

private String catName;

private String catColour;

private int catAge;

}

public class Horse

{

private String horseName;

private String horseColour;

private int horseAge;

}

Step 3:

You will now create the constructor which will be used when creating your objects. Constructor declarations look similar to method

declarations except they use the name of the class and have no return type. Use the public keyword followed by the name of the

class e.g. Dog.

public Dog(String DogName,

String DogColour, int

DogAge)

{

 dogName = DogName;

 dogColour = DogColour;

 dogAge = DogAge;

}

public Cat(String CatName,

String CatColour, int CatAge)

{

 catName = CatName;

 catColour = CatColour;

 catAge = CatAge;

}

public Horse(String HorseName,

String HorseColour, int

HorseAge)

{

 horseName = HorseName;

 horseColour = HorseColour;

 horseAge = HorseAge;

}

The variables inside brackets e.g. DogName, are going to be used to pass in values to our properties so for example you set the

String dogName to equal the value of whatever is passed in from DogName when the constructor is invoked in the main method.

Step 4:

Now inside each of your classes for the animals you will create set methods which when called will allow you to set the properties

of the object you have created. You will need a set method for each individual field of the object you wish to set. The set method

accepts a parameter e.g. String newName. The data type will be the same as the field that you are changing. We set the field to

equal the value of the parameter thus passing in values from another class and setting the properties of our object.

public void setName(String

newName)

{

 dogName = newName;

}

public void setColour(String

newColour)

{

 dogColour = newColour;

}

public void setAge(int newAge)

{

 dogAge = newAge;

}

public void setName(String

newName)

{

 catName = newName;

}

public void

setColour(String newColour)

{

 catColour = newColour;

}

public void setAge(int

newAge)

{

 catAge = newAge;

}

public void setName(String

newName)

{

 horseName = newName;

}

public void setColour(String

newColour)

{

 horseColour = newColour;

}

public void setAge(int newAge)

{

 horseAge = newAge;

}

Objects Tutorial [PROGRAMMING USING C#]

 Page 15

Step 5:

Underneath your set methods you will need to create get methods which when called will return the relevant values of your

objects properties. We will use the get methods in collaboration with the printDetails which will be created later.

Step 5:

 Next, within the dog, horse and cat class you will create a method that will output the sound that the cat/horse/dog will make onto

the console.

public void makeNoise(){

Console.WriteLine("Woof");

}

public void makeNoise(){

Console.WriteLine("Meooww");

}

public void makeNoise(){

Console.WriteLine("Neigh");

}

Step 6:

Create a printDetails method in each class using the get methods created above. Here is the code.

public void printDetails(){

Console.WriteLine("Dog

Details are as follows:

\nDog Name: " + getName()

+ "\nDog Colour: "

+getColour() + "\nDog Age:

" + getAge());

 }

public void printDetails(){

Console.WriteLine("Horse

Details are as follows:

\nHorse Name: "+getName()

+ "\nHorse Colour: "

+getColour() + "\nHorse Age:

" + getAge());

 }

public void printDetails(){

Console.WriteLine(

"Cat Details are as

follows: \nCat Name: " +

getName()

+ "\nCat Colour: "

+getColour() +"\nCat Age: "

+ getAge());

 }

Step 7:

Navigate to your tester class which contains the main method. Here you will invoke your constructor to create your objects. First

use the class name of the object you are creating e.g. Dog followed by a name of your choice in this example dogOne. Following

this will be an equals sign and the new keyword and then the class name again. Inside brackets you will need to supply the

parameters which match the properties that the object possesses e.g. name, colour and age. Create two objects for each of your

classes.

Objects Tutorial [PROGRAMMING USING C#]

 Page 16

The code required is shown below.

Dog dogOne = new Dog("Fido","Black",8);
Dog dogTwo = new Dog("Max","White",6);

Cat catOne = new Cat("Minx","Ginger",2);
Cat catTwo = new Cat("Scoop","Black",4);

Horse horseOne = new Horse("Shergar","Brown",12);
Horse horseTwo = new Horse("Ben","Black",4);

Step 8:

Call your printDetails method by using the object’s name followed by a ‘.’ and then the name of the method.

Step 9:

Save your work by selecting File>Save All or alternatively, use the shortcut Ctrl+Shift+S. Once you have done this,

run your project using the Run button on the toolbar or by using the shortcut Ctrl+F5.

Example output is shown below:

EXERCISE 4- DOCTOR’S SURGERY

In this exercise you will create classes to represent doctors, nurses and patients. Use constructors to

create objects of these types. Print out the details for your objects at the end.

