EXERCISE 1

In this tutorial, you will practice how to create objects based upon a farmyard scenario. You will learn how to create a
blueprint class for each type of animal on the farm and a Tester class which will allow you to create your objects and call
/ assign data to your variables. You will learn to do this without a constructor.

Your farm will have 2 dogs, 2 cats and 2 horses. You will create the following files:

Dog.java Cat.java Horse.java FarmTester.java

variables variables variables Main method

additional methods additional methods additional methods Create your objects and
pass in data
Print out the stored details
on each object.

TASK

1:

CREATING OBJECTS WITHOUT THE USE OF A CONSTRUCTOR

Step 1:

Open Visual Studio. Select Fi1e>New>Project. Choose Visual C# and C# Console Application. Name the project
Farmyard and select finish.

FILE

N B

EDIT VIEW PROJECT
Mew

Open

Add

Close

Close Solution

Save Program.cs

Save Program.cs As...
Advanced Save Options...
Save All

Export Template...
Source Control

Page Setup...

Print...

Recent Files

Recent Projects and Solutions

Exit

SQL TOOLS TEST

Project...
Web Site...

Team Project...

File...

Project From Existing Code...

AMALYZE

WINDOW

Ctrl+Shift+N
Shift+Alt+MN

Ctrl+N

BUILD DEBUG TEAM
i
3 @
3 |_T"=
i
Ctrl+S
Ctrl+5hift+5
L3
Ctrl+P
1]
1 3
Alt+F4

Page 1

Step 2:

Next, you will add the class files to the Solution, by right clicking on the Solution name in the Solution Explorer and going to
Add-> New—> Class

Mew Item... Ctrl+Shift+A
Existing Item... Shift+Alt+A
Mew Folder

Windows Form...
User Control...
Component...

Class...

Solution Explorer

@ e-2naa &R

Search Solution Explorer (Ctrl+;)

T Solution 'Farmyard' (1 project)

=]

&

Lo gl

EXoxR®

*

Build

Rebuild

Clean

Publish...

Run Code Analysis
Scope to This

New Solution Explorer View
Calculate Code Metrics
Add

Add Reference...

Add Service Reference..,
Manage MuGet Packages...
View Class Diagram

Set as StartUp Project
Debug

Add Solutien to Source Contral...

Cut

Remove
Rename
Unload Project

Open Folder in File Explorer

Properties

Ctrl+X

Del

Alt+Enter

©

Page 2

Call this Dog.
ssoventenrompes O i W " TS
4 Installed Sortby: Defaut - Search Installed Templates (Ctrl<E) 0@ ~
< EmiERiees .l;j"‘ Class Viewal C2ltems Type: Visual C2 Items
[C)Utde B An empty class definition
ata
i £
— o0 Interface Visual C# Items
Web
. . "
Windows Forms Windows Form Visual C# Items
WPF
- .
Reporting .'.j User Control Visual C# Items
Worldflow
Graphics e | Component Class Visual C# Items
- L]
b Online Rf User Control (WPF) Visual C& Items
<y
Zi0| AboutBox Visual C# Items
q? ADO.NET Entity Data Model Visual C# Items
Ylj Application Configuration File Visual C# Items
Application Manifest File Visual C# Items
—c
I Assembly Information File Visual C# Items
c
@ Authentication Domain Service Visual C# Items
E Bitmap File Visual C# Items
Y [T 4
Name: Dog.cs

This class will act as a blueprint for and will allow you to create objects of type Dog. You do not need to have a main method here
as this is a blueprint class and within this class. Within this class, you will have your variables and methods that every dog object
will have. Once the class is created, it should look like this:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace Farmyard

1

public class Dog

1

Repeat step to create a blueprint class for your Horse and Cat objects.

Page 3

Solution Explorer

@ o-24d #R

Search Selution Explorer (Ctri+;)

|ﬁ| Solution 'Farmyard' (1 project)
4 Farmyard
b & Properties
P =B References
w1 App.config
c* Catcs
ct Dog.cs

c* Horse.cs

W VW

c* Program.cs

Your Program class will be your tester file and will be the one that contains the main method. This will be the file where you will
create your objects and also where you will call and pass data to your methods. It will be the file that you will compile and run. It will

look like this initially.

using System;

using System.Collections.Generic;

using System.Ling;
using System.Text;
using System.Threading.Tasks;

namespace Farmyard

1
class Program
1
static wveid Main(string[] args)
1
¥
¥
¥
Step 4:

Inside the Dog, Horse and Cat classes you must declare public variables which will be the fields of the class e.g. the
dog/cat/horse’s name, age and the colour. Initially you will create your dog, horse and cat objects without the use of a constructor
by accessing the public variables you create here.

public String catName;
public String catColour;

public int catAge;

public String dogName;
public String dogColour;

public int dogAge;

public String horseName;
public String horseColour;

public int horseAge;

Page 4

Objects Tutorial

[PROGRAMMING USING C#]

Step 5:

Next, within the dog, horse and cat class you will create a method that will output the sound that the cat/horse/dog will

make onto the console.

public void makeNoise () {

}

Console.WritelLine ("Meooww") ;

public void makeNoise () {

Console.WriteLine ("Woof") ;

}

public void makeNoise () {
Console.WriteLine ("Neigh") ;

}

Within this section, you must also create a print method that will allow you to output the contents of the variables for each object

that you create onto the screen.

public void printDetails () { public void printDetails () { | public void printDetails () {
Console.WritelLine (Console.WriteLine ("Dog Console.WritelLine ("Horse
"Cat Details are as Details are as follows: Details are as follows:
follows: \nCat Name: " + \nDog Name: " + dogName \nHorse Name: "+horseName
catName + "\nDog Colour: " + "\nHorse Colour: "
+ "\nCat Colour: " +dogColour + "\nDog Age: " | +horseColour + "\nHorse
+catColour +"\nCat Age: " + | + dogAge); Age: " + horseAge);
catAge) ; } }

}
Step 6:

Your class files should now look like this:

Cat.java public class Cat {

public
public
public
public

}

catName +
}
}

"\nCat Colour:

String catName;
String catColour;
int catAge;

void makeNoise () {
Console.WriteLine ("Meow") ;

public void printDetails () {
Console.WriteLine ("Cat Details are as follows:
" +catColour +"\nCat Age:

\nCat Name: " +
" + catAge);

Horse.java

}

"+horseName +

}

}

"\nHorse Colour:

public class Horse {

public String horseName;
public String horseColour;
public int horseAge;

public void makeNoise () {
Console.WriteLine ("Neigh") ;

public void printDetails () {
Console.WritelLine ("Horse Details are as follows:
" t+horseColour + "\nHorse Age: "

\nHorse Name:
+ horseAge) ;

Page 5

Dog.java public class Dog {

public String dogName;
public String dogColour;
public int dogAge;

public void makeNoise () {
Console.WriteLine ("Woof Woof!");

}

public void printDetails () {
Console.WriteLine ("Dog Details are as follows: \nDog Name: " + dogName
+ "\nDog Colour: " +dogColour + "\nDog Age: " + dogAge);

}

}

Step 7:

You will now need to navigate to your Program class which contains the main method. This is the class in which you will create
your objects. First create a dog object. We use the class name first followed by the name we supply for the object, call it dogOne.
Follow this with an equal’s sign and then using the new keyword finished by referencing the class again.

Dog doglne = new Dog();

Create another dog object and also objects of type horse and cat.

Dog dogOne
Dog dogTwo

new Dog(d;
new Dog(d;

Cat catOne
Cat catTwo

new Cat(};
new Cat(};

Horse horseOne = new Horse();
Horse horseTwo = new Horse();
Step 8:

You can now set the properties of your objects. First, use the name of your object followed by a dot. Next, you must select the
relevant property that you want to set e.g. dogName. Then use an equals sign followed by the value you want to set it to. Make
sure you pay attention to the data type of the property you are setting so that you supply a correct value.

dogOne.dogName = "Marley";
dogOne.dogColour = "Brown";

dogOne.dogAge = 4;

dogTwo.dogName = "Rue'";
dogTwo.dogColour = "Black";

dogTwo.dogAge = 3;

catOne.catName = "Tillums";
catOne.catColour = "Black";

catOne.catAge = 5;

Page 6

catTwo.catName = "Scoop";
catTwo.catColour = "Grey";

catTwo.catAge = 7;

horseOne.horseName = "Shergar";
horseOne.horseColour = "Brown";
horseOne.horseAge = 10;
horseTwo.horseName = "Angus";
horseTwo.horseColour = "Black";
horseTwo.horseAge = 6;

Step 9:

Now call your printDetails method for each object to print out the details. You first use the name of the object followed by a dot and
then the method name. There are no arguments for printDetai 1s so the brackets at the end of the statement will be empty.

dogOne.printDetails();
dogTwo. printDetails();

horsefne.printDetails();
horseTwo.printDetails();

catOne.printDetails();
catTwo. printDetails();

Step 10:
Save your code by selecting File>Save A1l orusing the shortcut Ctr1+Shift+s.

FILE EDIT VIEW PROJECT BUILD DEBUG

MNew ¥
Open »
Add 3
Close

E Close Solution

B Save Program.cs Ctrl+5
Save Program.cs As...
Advanced Save Options...

W Save Al Ctrl+Shift+5
Export Template...

Source Control L
B PageSetup..
= Print... Ctrl+P
Recent Files L
Recent Projects and Solutions]
B Eit Alt+F4

Start
Now run your project by selecting the run button from the toolbar y e or using the shortcut Ctr1+F5

Page 7

Example output is shown below.

B C\Windows\system32\cmd.exe - "

Dog Details are as follows:
Dog Mame: Marley

Dog Colour: Brown

Dog Age: 4

The noisze a Dog makes i=s =
\loooooooof

Pres=z any key to continue . . .

Page 8

EXERCISE 2 - CREATING OBJECTS (SET METHODS)

Your farm will have 2 dogs, 2 cats and 2 horses. You will create the following files:

Dog.java Cat.java Horse.java FarmTester.java

private variables private variables private variables Main method

getters getters getters Create your objects and

setters setters setters pass in data

additional methods additional methods additional methods Print out the stored details
on each object.

Step 1:

Create a new project, C# Console Application. Name it FarmyardSetMethods and click Finish.

FILE EDIT VIEW PROJECT
New
QOpen
Add
Cloze
E Close Solution
Bl SaveProgram.cs
Save Program.cs As...
Advanced Save Options...
¥ Save Al
Export Template...
Source Control

Page Setup...

o B

Print...
Recent Files
Recent Projects and Solutions

B Exit

Create a new class and call it Dog. This is what the class will look like when it is initially created.

using System;

BUILD DEBUG TEAM 5QL TOOLS

YR Project.
Web Site...

File...

Project From Existing Code...

Team Project...

AMNALYZE ~ WINDOW

Ctrl+Shift+N
Shift+Alt+MN

Ctrl+N

Ctrl+5

Ctrl+Shift+5

Ctrl+P

Alt+F4

using System.Collections.Generic)

using System.Ling;
using System.Text;

using System.Threading.Tasks;

namespace Farmyard

1

public class Dog

{

Repeat step to create a blueprint class for your Horse and Cat objects.

Page 9

Step 2:

Inside the Dog, Horse and Cat classes you must declare private variables which will be the fields of the class e.g. the
dog/cat/horse’s name, age and the colour. This is what each of your classes will look like after creating the variables.

public class Dog
{ {

private String dogName;
private String dogColour;

private int dogAge;

} }

public class Cat

private String catName;
private String catColour;

private int catAge;

{

}

public class Horse

private String horseName;
private String
horseColour;

private int horseAge;

Step 3:

Now inside each of your classes for the animals you will create set methods which when called will allow you to set the properties
of the object you have created. You will need a set method for each individual field of the object you wish to set. The set method
accepts a parameter e.g. String newName. The data type will be the same as the field that you are changing. We set the field to
equal the value of the parameter thus passing in values from another class and setting the properties of our object.

public void setName (String
newName)
{

dogName = newName;

}

public void setColour (String
newColour)
{

dogColour = newColour;

}

public void setAge (int newAge)
{

dogAge = newAge;
}

public void setName (String
newName)
{

catName = newName;

}

public void
setColour (String newColour)
{

catColour = newColour;

}

public void setAge (int
newAge)
{

catAge = newAge;

}

public void setName (String
newName)
{

horseName = newName;

}

public void setColour (String
newColour)
{

horseColour = newColour;

}

public void setAge (int newAge)
{
horseAge = newAge;

}

Step 4:

Underneath your set methods you will need to create get methods which when called will return the relevant values of your
objects properties. We will use the get methods in collaboration with the printDetai1s which will be created later.

public String getName(){
return doglame;

h

public String getColour(){
return dogColour;

h

public int getAge(){
return doghge;
¥

public String getName(){
return catName;

}

public String getColour(}{
return catCalour;

}

public int getAge(){
return cathge;

b

public String getName(){
return horselName;

b

public String getColour(}{
return horseColour;

b

public int gethge(){
return horsefge;

b

Page 10

Objects Tutorial

[PROGRAMMING USING C#]

Step 5:

Next, within the dog, horse and cat class you will create a method that will output the sound that the cat/horse/dog will make onto

the console.

public void makeNoise () {
Console.WritelLine ("Woof");

}

public void makeNoise () {

Console.WriteLine ("Meooww") ;

}

public void makeNoise () {
Console.WriteLine ("Neigh") ;

}

Step 6:

Create a printDetails method in each class using the get methods created above. Here is the code.

public void printDetails () {
Console.WriteLine ("Dog
Details are as follows:
\nDog Name: " + getName ()
+ "\nDog Colour: "
+getColour () + "\nDog Age:
"+ gethAge());

}

public void printDetails () {
Console.Writeline ("Horse
Details are as follows:
\nHorse Name: "+getName ()
+ "\nHorse Colour: "
+getColour () + "\nHorse Age:
" + getAge());

}

public void printDetails () {
Console.WriteLine (
"Cat Details are as

follows: \nCat Name: " +
getName ()

+ "\nCat Colour: "
+getColour () +"\nCat Age: "

+ getAge());
}

Step 7:

Navigate to your tester class which contains your main method. Here you will again create two objects of each animal class but
this time use the set methods that you created to set the properties of the objects.

Dog dogOne = new Dog();
Dog dogTwo = new Dog();
Cat catOne = new Cat();
Cat catTwo = new Cat();

Horze horselne =
Horse horseTwo

new Horse();
new Horse();

Reference the object’s name followed by a dot to access the set method. Then inside a set of brackets supply the value that you

want to be set to the property.

dogOne.
dogOne.
dogOne.

setName ("Fido") ;
setAge (5) ;
dogTwo.

dogTwo.
dogTwo.

setName ("Rue") ;
setColour ("Black") ;
setAge (2);

catOne.
catOne.
catOne.

setName ("Molly") ;
setColour ("Brown") ;
setAge (6) ;

setColour ("Brown") ;

Page 11

catTwo.setName ("Jasper") ;
catTwo.setColour ("White") ;
catTwo.setAge (1)

horseOne.setName ("Angus") ;
horseOne.setColour ("Tan") ;
horseOne.setAge (3);

horseTwo.setName ("Angie") ;
horseTwo.setColour ("Grey") ;

horseTwo.setAge (1) ;

You can call these set methods again and again to change the properties of your objects e.g. we wanted to change the age of our
dogOne to 6 we would simply call the setAge for that object and supply 6 as the parameter. Try changing some of the values to
get experience using these methods.

dogOne.setAge (6) ;

Step 8:
Callyour printDetails method by using the object's name followed by a ‘.” and then the name of the method.

doglne.printDetails();
dogTwo.printDetails();

horseOne.printDetails();
horseTwo.printDetails();

catOne.printDetails();
catTwo.printDetails();

Step 9:

Save your work by selecting File>Save A1l orusing the shortcut Ctr1+Shift+S. Then run your project using the Run
Start -

button on the toolbar b Sta or using the shortcut Ctr1+F5.

Example output is shown below.

Bl C\Windows\system32icmd.exe - O | B |
Dog Details are as follows:

Dog MHame: Fido

Dog Colour: Brouwn

Dog Age: 5

The noise a Dog makes is :

lloooooooof

m | »

Dog Details are as follows:
Dog Mame: Rue
Dog Colour: Black
= 2
The noize a Dog makes is :

llocoocoooof

follows:

The noize a horze makes iz =
Me igghhhhhhh

as follows:
horze Mame:

Page 12

EXERCISE 3 - USING A CONSTRUCTOR

Your farm will have 2 dogs, 2 cats and 2 horses. You will create the following files:

Dog.java Cat.java Horse java FarmTester.java

private variables private variables private variables Main method

constructor constructor constructor Create your objects and
getters getters getters pass in data

setters setters setters Print out the stored details
additional methods additional methods additional methods on each object.

Step 1:

Create a new project, C# Console Application. Name it FarmyardConstructor and click Finish.

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE 'WINDOW

New [

i@ Project. Ctrl+Shift+N
Open Y@ Web Site.. Shift+Alt+N
Add » T@ Team Project..
Tlrez D File.. Ctrl+N
Ed Close Solution Project From Existing Code...
Bl SaveProgram.cs Ctrl+5

Save Program.cs As...
Advanced Save Options...

¥ Save Al Ctrl+Shift+5
Export Template...

Source Control K
1e] Page Setup...
= Print... Ctrl+P
Recent Files K
Recent Projects and Solutions K
B Ext Alt+F4

Create a new class and call it Dog. This is what the class will ook like when it is initially created.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace Farmyard

1
public class Dog
1
¥

}

Repeat step to create a blueprint class for your Horse and Cat objects.

Page 13

Objects Tutorial

[PROGRAMMING USING C#]

Step 2:

Inside the Dog, Horse and Cat classes you must declare private variables which will be the fields of the class e.g. the
dog/cat/horse’s name, age and the colour. This is what each of your classes will look like after creating the variables.

public class Dog

{

private String dogName;
private String dogColour;

private int dogAge;
}

public class Cat
{

private String catName;
private String catColour;

private int catAge;

}

public class Horse

{
private String horseName;
private String horseColour;

private int horseAge;

}

Step 3:

You will now create the constructor which will be used when creating your objects. Constructor declarations look similar to method
declarations except they use the name of the class and have no return type. Use the public keyword followed by the name of the

class e.g. Dog.

public Dog(String DogName,

String DogColour, int

DogAge)

{
dogName = DogName;
dogColour = DogColour;
dogAge = DogAge;

}

public Cat(String CatName,
String CatColour,

int CatAge)

catName = CatName;
catColour = CatColour;
catAge = CatAge;

public Horse (String HorseName,
String HorseColour, int
HorseAge)
{
horseName = HorseName;
horseColour = HorseColour;
horseAge = HorseAge;

The variables inside brackets e.g. DogName, are going to be used to pass in values to our properties so for example you set the
String dogName to equal the value of whatever is passed in from DogName when the constructor is invoked in the main method.

Step 4:

Now inside each of your classes for the animals you will create set methods which when called will allow you to set the properties
of the object you have created. You will need a set method for each individual field of the object you wish to set. The set method
accepts a parameter e.g. String newName. The data type will be the same as the field that you are changing. We set the field to
equal the value of the parameter thus passing in values from another class and setting the properties of our object.

public void setName (String
newName)
{

dogName = newName;

}

public void setColour (String
newColour)
{

dogColour = newColour;

}

public void setAge (int newAge)
{
dogAge = newAge;

}

public void setName (String
newName)
{

catName = newName;

}

public void
setColour (String newColour)
{

catColour = newColour;

}

public void setAge (int
newAge)
{

catAge = newAge;

}

public void setName (String
newName)
{

horseName = newName;

}

public void setColour (String
newColour)
{

horseColour = newColour;

}

public void setAge (int newAge)
{
horseAge = newAge;

}

Page 14

Objects Tutorial

[PROGRAMMING USING C#]

Step 5:

Underneath your set methods you will need to create get methods which when called will return the relevant values of your
objects properties. We will use the get methods in collaboration with the printDetails which will be created later.

public String getName(){
return dogName;

¥

public String getColour(){
return dogColour;

¥

public int getage(){
return doghge;
h

public String getName(){
return catMame;

¥

public String getColour(){
return catColour;

¥

public int getage(){
return catige;

¥

public String getName(){
return horselName;

¥

public String getColour(){
return horseColour;

¥

public int getfge(){
return horsehAge;

¥

Step 5:

Next, within the dog, horse and cat class you will create a method that will output the sound that the cat/horse/dog will make onto

the console.

public void makeNoise () {

Console.WriteLine ("Woof");

}

public void makeNoise () {
Console.WriteLine ("Meooww") ;

}

public void makeNoise () {
Console.WriteLine ("Neigh") ;

}

Step 6:

CreateaprintDetails method in each class using the get methods created above. Here is the code.

public void printDetails () {
Console.WriteLine ("Dog
Details are as follows:
\nDog Name: " + getName ()
+ "\nDog Colour: "
+getColour () + "\nDog Age:
" + getAge());

}

public void printDetails () {
Console.WriteLine ("Horse
Details are as follows:
\nHorse Name: "+getName ()
+ "\nHorse Colour: "
+getColour () + "\nHorse Age:
" + getAge());

}

public void printDetails () {
Console.WriteLine (
"Cat Details are as
follows: \nCat Name: " +
getName ()
+ "\nCat Colour: "
+getColour () +"\nCat Age: "
+ getAge ());

}

Step 7:

Navigate to your tester class which contains the main method. Here you will invoke your constructor to create your objects. First
use the class name of the object you are creating e.g. Dog followed by a name of your choice in this example dogOne. Following
this will be an equals sign and the new keyword and then the class name again. Inside brackets you will need to supply the
parameters which match the properties that the object possesses e.g. name, colour and age. Create two objects for each of your

classes.

Page 15

The code required is shown below.

Dog dogOne = new Dog("Fido","Black",8);
Dog dogTwo = new Dog("Max","White",6);

Cat catOne = new Cat("Minx","Ginger",2);
Cat catTwo = new Cat("Scoop","Black",4);

Horse horseOne
Horse horseTwo

new Horse("Shergar","Brown",12);

new Horse("Ben","Black",4);

Step 8:

Call your printDetails method by using the object's name followed by a ‘." and then the name of the method.

doglne.printDetails();
dogTwo.printDetails();

horseOne.printDetails();
horseTwo. printDetails();

catOne.printDetails();
catTwo.printDetails();

Step 9:

Save your work by selecting File>Save A1l oralternatively, use the shortcut Ct r1+Shi ft+S. Once you have done this,
run your project using the Run button on the toolbar or by using the shortcut Ct r1+F5.

Example output is shown below:

Bl C\Windows\system32icmd.exe = |

Details are as follows:

Mame:= Fido

Colour: Brown

Age: 5

noize a Dog makes is :
lloooooooof

Details are az follows:
Mame = Rue

Colour: Black

Age: 2

noize a Dog makes is =

Woooooooof

horze Details are as follows:
horze Mame: Angus

horse Colour: Tan

horze Age: 3

The noize a horse makes is :
Me igghhhhhhh

horze Details are as follows:
horse Mame: Angie

horze Colour: Grey

horze Age: 1

EXERCISE 4- DOCTOR’S SURGERY

In this exercise you will create classes to represent doctors, nurses and patients. Use constructors to

create objects of these types. Print out the details for your objects at the end.

Page 16

