
Practical 2 [PROGRAMMING USING C#]

 Page 1

EXERCISE 1
The tasks in the first part of this practical are step by step instructions as to how an object is created

in C#. This is followed by a number of tasks for you to complete by applying the knowledge that you

have previously gained.

TASK 1: Creating a mobile phone program

You go into a mobile phone shop to buy a mobile phone – what options do you have?

 Pay as you go or pay monthly

 Type of phone

Let’s say you decide to go pay as you go how is the phone then unique to you?

 You are allocated a phone number

How is the account activated?

 The account balance is set to zero

What functions can be carried out from an account perspective?

 Top up account with credit

 Make a call – reduces credit

 Send a text – reduces credit

 Get balance

There are other functions that you could apply but let’s start to code this part of the solution.

Step 1:

Run Visual Studio. It will open to the start page from which you can create a new project. Select

File>New>Project and choose a Visual C# Console Application. Name this project

Prac2Ex1.

Step 2: From the Solution Explorer on the right hand side of the screen select the project file, shown

here as Prac2Ex1. Right click on it which will open a new menu. Select Add>Class.

Practical 2 [PROGRAMMING USING C#]

 Page 2

Step 3:

A new window will open which will allow you to name the new class that you are creating. Name the

class mobile and click Add.

Practical 2 [PROGRAMMING USING C#]

 Page 3

Step 4:

Type the following code:

This function accepts the account type (either PayAsYouGo or Monthly), the name of the chosen

device (e.g. iPhone 5S) and a mobile number as a string. It then sets each of the values into variables

which can be called later. Let’s have a look at that now.

Step 5:

We want to print out account information, but we may not want to do this all at the same time. For

example there may be instances where we only want the balance displayed or just the mobile phone

number. So we will set each of these functions up separately.

Take a new line after the closing curly bracket of the Mobile public function (but before the closing

curly bracket of the Mobile public class definition) and type the following:

Practical 2 [PROGRAMMING USING C#]

 Page 4

Step 6:

Save your work (CTRL+Shift+S)

Step 7:

This class sets up the values a “mobile” will have and has begun to identify some of the functions
that will be possible on it but we would be best to test it. To do this we will navigate back to the
Program class which contains our main method.

Next, using the Solution Explorer, double click on Program.cs this will open it. Type the following
code inside the brackets of the main method:

Step 8:

Save your work (Ctrl+Shift+S). Run the program by clicking the start button on the

toolbar or use the shortcut Ctrl+F5. A console window should open. Example
output is shown below:

Practical 2 [PROGRAMMING USING C#]

 Page 5

Step 9:

Now let’s go back to the Mobile class and add some more functions, that we noted at the start of

this practical, such as:

 Top up account with credit

 Make a call – reduces credit

 Send a text – reduces credit

Click on the Mobile.cs (both Mobile.cs and Program.cs should remain open and you can

toggle between the two).

Before the last closing curly bracket of the class add the following code:

Step 10:

You will notice that we use two variables here CALL_COST and TEXT_COST these will need to be

declared and initialised at the top of the class with the other variables.

These variables will not be changed during the operation of the program so we can set them to be

constants using the const keyword shown below.

Set CALL_COST to equal 0.245 and TEXT_COST to equal 0.078.

Practical 2 [PROGRAMMING USING C#]

 Page 6

Here is the entire code for Mobile.cs, check that you have the same code:

Practical 2 [PROGRAMMING USING C#]

 Page 7

Step 11:

Navigate to the Program.cs tab and add this code after the last Console.WriteLine

statement to test the functions we just implemented.

Step 12: Save your work (Ctrl+Shift+S) and run the program. Example output is shown below.

Practical 2 [PROGRAMMING USING C#]

 Page 8

TASK 2: EXTEND THE MOBILE CLASS
In this part of the practical you will add more functionality to the mobile class and also introduce a

few more tests to ensure that what you are coding in the class actually executes as you think it

should.

Step 1

In the Program class add lines of code to create another mobile user. Here is a hint:

Mobile <nameOfVariable> = new Mobile (“Account Type”, “Device Type”,

“Mobile Number”);

Also you will only be editing the Program class; the Mobile class does not need to be amended for

this part of the practical.

Step 2

Add credit of your choice to this new mobile user and then make a call (add the minutes of your

choice) and finally send one or more text messages. Remember to output the change to the balance

after each call to Mobile class to ensure that the output is what you expect.

Step 3

Consider one more method that the mobile phone class could benefit from and program it in the

Mobile class. Then in the Program class test this function to ensure it is working appropriately.

TASK 3: CREATE A SQUARE CLASS

Step 1:

 Create a new project (C# Console Application) and call it Prac2Task3.

Step 2:

Create a new class in your project and name it Square. Open the new class and type the code shown

below.

Practical 2 [PROGRAMMING USING C#]

 Page 9

Step 3:

Open the Program class which contains the main method and type this code between the set of

curly brackets.

Step 4:

 Execute the program and examine the results.

 The aim of the program is to work out the area of a square and then increase (or grow) the

area of that square.

 Try to determine why the above program does not run as you would expect.

Shown below are the results we wish to display.

TASK 4: PROGRAM TO SWAP THE VALUES OF TWO VARIABLES

Step 1:

Create a new project and type the following code into the main method in Program.cs.

Practical 2 [PROGRAMMING USING C#]

 Page 10

The expectation for this program is that the variable first would contain the value of the variable

second i.e. 4 and that variable second would contain the value of the variable first i.e. 3.

If you run the program you will see that this is not the case. Now write a version of the program that

does work as expected.

TASK 5: A CIRCLE CLASS

What are the syntax errors in the following program?

How many can you spot before typing this into Visual Studio?

public glass Circle {

public static void main(String[] args) {

 double radius = 4;

 double area; // to hold area

 Double circumf; // to hold circumference

 // do the calculations

 Console.WriteLine("Area: " + area + \nCircumference: "

+ circumf);

 circum = 4 * Math.PI * radius;

// Class Math provides methods for common mathematical

functions e.g. PI

area = Math.PI * raduis * radius * radius

 //output answers

 }

}

When you work out what the syntax errors are type the code into a class in Visual Studio and run it.

Then fix all of the errors to determine if it provides you with the correct answers.

TASK 6: SWAP THE VALUES OF THREE VARIABLES

Write a program that stores three numbers into variables num1, num2 and num3. It should then

swap them around so that num1 holds the value originally in num3, num2 holds the value originally

in num1 and num3 holds the value originally in num2.

It should print the contents of the variables before and after swapping them, to demonstrate that it

works.

Practical 2 [PROGRAMMING USING C#]

 Page 11

EXERCISE 2

TASK 7: AN EMPLOYEE CLASS

Implement a class called Employee. This class should have a name (of type string) and a salary (of

type double). You will need a constructor with two arguments:

 public Employee (String employeeName, double currentSalary)

You will also need the following methods:

 getName – this should return the name of the employee

 getSalary – this should return the salary of the employee

 raiseSalary – this should raise the employee’s salary by a certain percentage

To test this class you will need to use the Program.cs class which contains the main method. This

class should test all of the methods.

TASK 8: A STUDENT CLASS

Implement a class Student with the following properties.

 A student has a name

 A score for an examination

You should program the following methods:

 getName – this should return the student’s name

 addExam – this should add an exam mark to the student

 getTotalMark – this should return the total marks gained by the student

 getAverageMark – this should calculate the average mark gained by the student (for this

you will need the total number of exams taken)

Use the Program class to test all methods in the Student class.

Amend the Student class to remove a mark from the student’s results. This will assume that you

have already added a mark to the student (in later weeks we will look to checking this first).

TASK 9: CONVERTING CELSIUS TO FAHRENHEIT

Write a program to compute the Fahrenheit equivalent of the temperature 20º Celsius, and write

the answer to the console output window in the form of:

The Fahrenheit equivalent of 20 degrees Celsius is 52.00

Note that the conversion may be done using the formula:

 F = (9/5) * C + 32 : where F is the required Fahrenheit temperature, and C is the Celsius

temperature.

Practical 2 [PROGRAMMING USING C#]

 Page 12

EXERCISE 3

TASK10: IMPLEMENTING A CAR CLASS

Implement a class Car with the following properties which you will set in the constructor.

 fuel efficiency which is measured in miles per gallon or mpg

 fuel in the tank (in litres) with an initial level of 0

You will develop a program to add fuel to the car, drive a distance in miles and estimate the cost of

the journey.

Your should program the following methods

 drive – this should simulate driving the car for a certain distance in miles.

 (HINT: fuel used = distance driven divided by mpg). The gallons used for the journey have to

be converted into the litres equivalent.

 convertToLitres- a method that will take a parameter of gallons and convert that value

to litres. This can be done by multiplying the value by 4.546

 getFuel – this should return the amount of fuel in the tank

 addFuel – this should add fuel to the tank

 fuelCost-the cost of fuel in pennies either added to the tank or used for driving the

distance passed to the drive method.

 For the purpose of this program the cost per litre of petrol is approximately 135.9 pence.

 getCost – a method that returns the cost of fuel in pounds and pence.

For the purposes of this class you can assume that the drive method is never called with a distance

that consumes more than the available fuel.

Write appropriate code in the Program class to test all of the methods that you have implemented.

