
Practical 1 [PROGRAMMING USING C#]

 Page 1

EXERCISE 1
The tasks in the first part of this section are step by step instructions to guide you in the practical

application of the theory of programming. This is followed by a number of tasks for you to complete

by applying the knowledge that you have previously gained.

TASK 1: STARTING WITH VISUAL STUDIO: HELLO WORLD!
Step 1: Run Visual Studio. It will open to the start page from which you can create a new project.

Step 2: Click on the File tab at the top left and then select New > Project. Note the key combination

of Ctrl+Shift+N can also be used as a shortcut.

Practical 1 [PROGRAMMING USING C#]

 Page 2

Step 3: A new pop up window will open in which we select our project type. On the left hand side

from the Templates drop down menu choose Visual C# and then select Console Application as

shown below. Then enter a suitable name for your project such as Prac1Ex1 and click OK.

Step 4: Your project has now been created and a class file called Program.cs will open. Note:

there may already be some code in the window and you will only need to type two of the lines

below. Console.WriteLine simply displays the text between the quotation marks in the

console window.

Note: This line indicates

that this is our main

method, it will allow our

code within it to run.

Practical 1 [PROGRAMMING USING C#]

 Page 3

Step 5: Save your work (CTRL+S) and then press the Start button on the toolbar. Your

program will run and a console with open showing the results. Press any key to close the console.

You have created your first C# program!

TASK 2: PRINT OUT YOUR NAME USING THE CONSOLE WINDOW
We will update our Hello World program so that it takes input from the user, in this case your name,

and displays it in the console output.

Step 1: Make an alteration to the message between the “ ” marks on the Console.WriteLine

so that the user is asked for their name e.g.

Step 2: Now you will need to declare a variable of type String to hold the user’s name. It is good

practice to give your variables names that accurately describe what they are to avoid any confusion.

Console.ReadLine is used to take user input and will accept characters which are typed until

the user presses enter. The characters are assigned to the variable myName.

Step 3: Using another instance of Console.WriteLine you can display your name by referring

to the variable used to store it.

Step 4: Save your project (Ctrl+S) and click start to see the results. You will be prompted

to enter your name. Press the enter/return key when you are finished entering.

Practical 1 [PROGRAMMING USING C#]

 Page 4

Now you have experience with basic user input and output.

TASK 3: COMMENTS
Comments are annotations or notes written by the programmer which explain the code to another

user and make it easier to understand. They can be very significant to a human but are generally

ignored by the computer in the compilation of the program. In terms of our first program, comments

may not seem necessary but as projects get larger they become more important and it is good

practice to get into the habit of using them. Examples are shown below but be sure to try it out for

yourself.

Practical 1 [PROGRAMMING USING C#]

 Page 5

EXERCISE 2

TASK 4: GETTING TO GRIPS WITH VARIABLES
Now it is time to test some of the knowledge you have gained involving creating variables and data

types.

Create a new project (C# Console Application) as shown in Exercise 1. Name it Prac1Ex2 and click

Ok.

In your program create three int variables and call them width, height and area. We will need to

make use of the Console.ReadLine() to initialise the height and width variables with values

input by the user. However as the ReadLine() accepts characters rather than numbers we will

need to convert our input to an int so that we can perform mathematical operations on it. We

simply use a method that has been built in type conversion method called Convert followed by a

period and ‘ToInt32’ specifies what type we want to convert to.

This will assign the next number entered to our variable width. Do the same for height so

both the variables have been assigned values. Find the area of the shape by multiplying the

two variables and storing the result of the operation in the variable area. Finally print area

out using Console.WriteLine(area);

TASK 5: CASTING DATA TYPES
This exercise requires you to cast the result of an operation performed upon two integers to a

double. Declare and initialise variables for two ints sum and count. Initialise these variables to 17

and 5 respectively. Then declare a double variable called doubleAverage and an int variable

called intAverage.

Remember that the process for casting is to place the data type in parentheses before the operation

that is being performed which in this case is sum/count. We will perform this operation and store

the result in intAverage as well for reference. Using

Console.WriteLine(variableName) write doubleAverage and intAverage to the

output window to see the difference.

Example Output

Practical 1 [PROGRAMMING USING C#]

 Page 6

TASK 6: FINDING THE SUM OF THE 10 POSITIVE INTEGERS
Write a program that prints the sum of the first ten positive integers: 1+2+…+10.

TASK 7: MODIFIED HELLO WORLD PROGRAM
This is a slightly modified version of the HelloWorld program :

class HelloWorldError {

public static void main(String[] args) {

Console.WriteLine ("Hello World!);

Console.WriteLine ("Hello","world");

}

}

Each of the Console.WriteLine statements has an error. Fix the errors so that the program

successfully compiles and runs. What were the errors?

TASK 8 : DISPLAYING YOUR NAME INSIDE A BOX
Write a program that displays your name inside a box on the screen, see example shown below.

You should be able to do this with characters such as + - |

Practical 1 [PROGRAMMING USING C#]

 Page 7

EXERCISE 3

TASK 9: METHODS
Step 1: Create a new project (C# Console Application) as shown in Exercise 1. Name it Prac1Ex3

and click Ok.

Step 2: In the program class after the closing bracket for the main method you will need to define

two methods called messageOne and messageTwo. These methods will be public and have no

return type i.e. be void and accept no parameters. Each method will simply output a message to the

console such as:

The static keyword placed after the access modifier indicates that the method belongs to the class

which defines it in this case our Program class.

Step 3: Now call your two methods in your main method by using their names followed by

parentheses ().

Example Output:

Practical 1 [PROGRAMMING USING C#]

 Page 8

TASK 10: EXPLORING ENCAPSULATION
Step 1: Create a new class after the closing bracket for the program class and name it Encapsulation

Test.

Step 2: Define two methods in the new class. The first will be a public method and have no return

type or parameters, call it publicMethod(). The second method will be similar but will be

private and thus called privateMethod(). Remember to add the static keyword after the access

modifiers to indicate that the method belongs to the EncapsulationTest class.

<access modifier> static <return type> <method name> (parameters)

{

 Method body

}

Step 3: Output a message from each of your methods making sure to differentiate between which

method is being called e.g.

Step 4: Call both of the methods in the main method. You should receive an error when trying to

call the privateMethod(). This is because of the accessibility level we assigned to the method

by using the private keyword. How can this issue be solved without changing the access modifier of

the method to public?

TASK 11: EXPLORING ENCAPSULATION
Write a program that will help the user decide whether they should drive their car to university or

take the train. You know the one-way distance from your home to university and the fuel efficiency

of your car(in miles per gallon). You also know the one way distance price of a train ticket. You

assume the cost of petrol is £6.22 per gallon and car maintenance at 26.2 pence per mile. Write a

program to decide which commute is cheaper. You should try to design this on paper first and then

try to code it in C#.

Example for Mini Cooper:

 Fuel Efficiency: 52.3mpg

 Price of one way train ticket from Bangor to Belfast £5.40

 Cost of petrol per gallon £6.22 (136.9 pence per litre)

 Car maintenance 26.2 pence per mile

 Distance from home to university 15 miles

 Therefore the cost of driving should be £5.71(depending on rounding).

Closing bracket

of program class

