
Code Clock
Day 1: Basic Input/Output

Learn.to.code

Coding with C#

@ QUB

1

Introduction to C#
Welcome to the exciting world of C# programming!

C# is a fun and powerful programming language that's perfect for beginners, especially kids like

you. It's a modern, object-oriented language developed by Microsoft and is widely used for

creating desktop applications, websites, and most famously, games with the Unity engine.

Whether you want to create your own games, solve puzzles, or build cool projects, C# makes it

easy to turn your ideas into reality.

What is C#?

C# is a type of language that computers understand. Just like we use English to talk to each

other, we use C# to tell computers what to do. It is one of the most popular programming

languages in the world because it's a powerful and versatile language.

Why Learn C#?

1. Strongly Typed: C# requires you to be specific about the type of data you are using. This

helps you write correct code and catch mistakes early.

2. Versatile: You can use C# to make games (with Unity), create desktop applications, build

websites, and much more!

3. Powerful: C# is used by many large companies to build professional, high-performance

applications.

What Can You Do with C#?

● Create Games: Imagine making your own video game from scratch using the Unity game

engine!

● Build Applications: C# is a great language for building all sorts of applications for Windows.

● Solve Problems: C# can help you solve maths problems, puzzles, and even real-world

challenges.

2

Getting Started

You will be using Visual Studio to learn C#. Visual Studio is a powerful and free-to-download C#

Code Editor.

Your First Program

Let's write your very first C# program together. It's called "Hello, World!" and it's super simple.

This program will make the computer say "Hello, World!" on the screen. Ready? Let's go!

Open up Visual Studio and create a new Console App project. The main file will be called

Program.cs.

Enter the following code inside the Main method:

What Happens Here?

● Console.WriteLine: This is a command that tells the computer to display something on the

screen. The text you want to display goes inside the parentheses () and quotation marks "".

● "Hello, World!": This is the message we want to show.

When you run this program, you'll see the words "Hello, World!" appear on your screen.

Congratulations, you just wrote your first C# program!

3

C# Code Structure

In C#, the code is organised into classes and methods. A basic console application will look like

this:

C# Indentation

Indentation refers to the spaces at the beginning of a code line. In C#, indentation is used to

make the code more readable and easier to follow. The curly braces {} are used to define a block

of code.

For example, a loop uses indentation to show which lines of code are part of the loop's block:

4

C# Comments

Comments can be used to explain C# code.

● Comments can be used to make the code more readable.

● Comments can be used to prevent execution when testing code.

A single-line comment starts with //.

You can also use multi-line comments. These start with /* and end with */.

5

Variables

Variables are containers for storing data values.

Creating Variables

In C#, you must declare the data type and the name of the variable before you assign a value to

it.

You can change the value of a variable, but you cannot change its data type after it has been

declared.

6

Variable Names

A variable can have a short name (like x and y) or a more descriptive name (age, carName,

totalVolume). Rules for C# variables:

● A variable name must start with a letter or the underscore character.

● A variable name cannot start with a number.

● A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and

_).

● Variable names are case-sensitive (age, Age and AGE are three different variables).

● A variable name cannot be any of the C# keywords (e.g., int, string, if).

Here are some examples of legal variable names:

Now try entering the following illegal variable names:

7

Casting

If you want to specify the data type of a variable, this can be done with casting. This is often

necessary when you get input from the user, which is always a string.

Get the Type

You can get the data type of a variable with the GetType() method.

Case-Sensitive

Variable names in C# are case-sensitive.

8

Output Variables

The C# Console.WriteLine() method is used to output variables.

You can output multiple variables by using string concatenation with the + operator, or with

modern string interpolation using a $ symbol:

Built-in Data Types

In programming, a data type is an important concept. Variables can store data of different types,

and different types can do different things.

C# has the following data types built-in by default:

● Integer Types: int, long

● Floating-Point Types: float, double, decimal

● Character Types: char, string

● Boolean Type: bool

9

C# Numbers

There are two common numeric types in C#:

● int (for whole numbers)

● double (for floating-point numbers with decimals)

Variables of numeric types are created when you assign a value to them.

Random Number

To generate a random number in C#, you need to use the Random class. You must first create an

instance of the Random class and then call its Next() method.

The using System; line at the top of your file is important as it imports the necessary code to use

the Random class.

10

C# Conditions and if statements

C# supports the usual logical conditions from mathematics:

● Equals: a == b

● Not Equals: a != b

● Less than: a < b

● Less than or equal to: a <= b

● Greater than: a > b

● Greater than or equal to: a >= b

These conditions can be used in several ways, most commonly in if statements and loops. An if

statement is written by using the if keyword.

else if

The else if keyword is C#'s way of saying "if the previous conditions were not true, then try this

condition."

11

else

The else keyword catches anything which isn't caught by the preceding conditions.

In this example, a is greater than b, so the first condition is not true. The else if condition is also

not true, so we go to the else condition and print to the screen that "a is greater than b".

You can also have an else without the else if:

12

Logical Operators

The && (and), || (or), and ! (not) operators are used to combine conditional statements.

&& (And)

Test if a is greater than b AND if c is greater than a:

|| (Or)

Test if a is greater than b OR if a is greater than c:

! (Not)

The ! keyword is a logical operator that is used to reverse the result of the conditional

statement.

Test if a is NOT greater than b:

13

Nested If

You can have if statements inside if statements. This is called a nested if statement.

14

Challenges
Using basic input/output commands, write the code which does the following:

1. Prints today's date.

2. Asks the user to enter their name, gender, and age and prints it out.

3. Using the user’s age, checks if they are under 12, in which case, it should say “You are too

young to be here!”

4. Checks the user’s age against the following age boundaries for each year group and prints

their year out. i.e., Year 8 (12), Year 9 (13), Year 10 (14), Year 11 (15), etc.

15

Solution

16

	
	Introduction to C#
	What is C#?
	Why Learn C#?
	What Can You Do with C#?
	
	Getting Started

	Your First Program
	
	What Happens Here?

	
	C# Code Structure
	C# Indentation
	
	
	C# Comments

	
	Variables
	Creating Variables
	
	Variable Names

	
	
	Casting
	Get the Type
	Case-Sensitive

	
	
	Output Variables
	Built-in Data Types

	
	C# Numbers
	Random Number

	
	C# Conditions and if statements
	else if
	
	else

	
	Logical Operators
	&& (And)
	|| (Or)
	! (Not)

	Nested If
	
	Challenges

